Leveraging large language models to identify microcounseling skills in psychotherapy transcripts.

IF 3 1区 心理学 Q2 PSYCHOLOGY, CLINICAL
Karin Hammerfald, Fabian Schmidt, Vladimir Vlassov, Henrik Haaland Jahren, Ole André Solbakken
{"title":"Leveraging large language models to identify microcounseling skills in psychotherapy transcripts.","authors":"Karin Hammerfald, Fabian Schmidt, Vladimir Vlassov, Henrik Haaland Jahren, Ole André Solbakken","doi":"10.1080/10503307.2025.2539405","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> Microcounseling skills are fundamental to effective psychotherapy, yet manual coding is time- and resource-intensive. This study explores the potential of large language models (LLMs) to automate the identification of these skills in therapy sessions. <b>Method:</b> We fine-tuned GPT-4.1 on a set of psychotherapy transcripts annotated by human coders. The model was trained to classify therapist utterances, generate explanations for its decisions, and propose alternative responses. The pipeline included transcript preprocessing, dialogue segmentation, and supervised fine-tuning. <b>Results:</b> The model achieved solid performance (Accuracy: 0.78; Precision: 0.79; Recall: 0.78; F1: 0.78; Specificity: 0.77; Cohen's <i>κ</i>: 0.69). It reliably detected common and structurally distinct skills but struggled with more nuanced skills that rely on understanding implicit relational dynamics. <b>Conclusion:</b> Despite limitations, fine-tuned LLMs have potential for enhancing psychotherapy research and clinical practice by providing scalable, automated coding of therapist skills.</p>","PeriodicalId":48159,"journal":{"name":"Psychotherapy Research","volume":" ","pages":"1-19"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychotherapy Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10503307.2025.2539405","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, CLINICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Microcounseling skills are fundamental to effective psychotherapy, yet manual coding is time- and resource-intensive. This study explores the potential of large language models (LLMs) to automate the identification of these skills in therapy sessions. Method: We fine-tuned GPT-4.1 on a set of psychotherapy transcripts annotated by human coders. The model was trained to classify therapist utterances, generate explanations for its decisions, and propose alternative responses. The pipeline included transcript preprocessing, dialogue segmentation, and supervised fine-tuning. Results: The model achieved solid performance (Accuracy: 0.78; Precision: 0.79; Recall: 0.78; F1: 0.78; Specificity: 0.77; Cohen's κ: 0.69). It reliably detected common and structurally distinct skills but struggled with more nuanced skills that rely on understanding implicit relational dynamics. Conclusion: Despite limitations, fine-tuned LLMs have potential for enhancing psychotherapy research and clinical practice by providing scalable, automated coding of therapist skills.

利用大型语言模型来识别心理治疗记录中的微咨询技巧。
目的:微咨询技巧是有效的心理治疗的基础,但手工编码是时间和资源密集的。本研究探讨了大型语言模型(llm)在治疗过程中自动识别这些技能的潜力。方法:我们在一组由人类编码器注释的心理治疗转录本上对GPT-4.1进行微调。该模型经过训练,可以对治疗师的话语进行分类,为其决策生成解释,并提出替代反应。该管道包括文本预处理、对话分割和监督微调。结果:模型取得了良好的性能(准确率:0.78;精度:0.79;回忆:0.78;外国游客1:0.78;特异性:0.77;Cohen’s κ: 0.69)。它可以可靠地检测到常见的和结构上不同的技能,但在依赖于理解隐含关系动态的更细微的技能上却遇到了困难。结论:尽管存在局限性,但通过提供可扩展的治疗师技能自动编码,微调llm具有增强心理治疗研究和临床实践的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychotherapy Research
Psychotherapy Research PSYCHOLOGY, CLINICAL-
CiteScore
7.80
自引率
10.30%
发文量
68
期刊介绍: Psychotherapy Research seeks to enhance the development, scientific quality, and social relevance of psychotherapy research and to foster the use of research findings in practice, education, and policy formulation. The Journal publishes reports of original research on all aspects of psychotherapy, including its outcomes, its processes, education of practitioners, and delivery of services. It also publishes methodological, theoretical, and review articles of direct relevance to psychotherapy research. The Journal is addressed to an international, interdisciplinary audience and welcomes submissions dealing with diverse theoretical orientations, treatment modalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信