Temporal image compression in cardiac computed tomography: impact of temporal super resolution and noise reduction for assessing left ventricular function.
IF 1.5 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"Temporal image compression in cardiac computed tomography: impact of temporal super resolution and noise reduction for assessing left ventricular function.","authors":"Masatoshi Kondo, Yuzo Yamasaki, Atsushi Ueno, Ryohei Funatsu, Takashi Shirasaka, Toyoyuki Kato, Kousei Ishigami","doi":"10.1007/s12194-025-00950-x","DOIUrl":null,"url":null,"abstract":"<p><p>Computed tomography (CT) is valuable for assessing left ventricular (LV) function. However, it leads to increased data storage demands and energy consumption. Temporal super resolution (TSR) has the potential to reduce temporal data size while preserving accuracy. This study aimed to determine the feasibility of using TSR for temporal image compression in LV functional analysis. The study included 20 patients who underwent retrospective electrocardiogram (ECG)-gated cardiac CT, from which 20 cardiac phases per patient were acquired. TSR was applied to temporally compressed image data sets, with and without noise reduction (NR), using two NR levels: weak (30%) and strong (70%). Five data sets-including the original uncompressed data and four compressed versions-were analyzed for LV function using fully automated software. Bland-Altman plots and Pearson correlation coefficients were used to assess measurement agreement and reliability. The correlations between the uncompressed and compressed data sets for LV end-systolic volumes (ESVs), end-diastolic volumes (EDVs), and ejection fractions (EFs) were strong (all r = 1.00, 95% CI = 1.00-1.00, all Ps < 0.0001). Bland-Altman analysis showed reduced bias in LV measurements when TSR was applied without NR, while bias increased when NR was applied at both levels. The limits of agreement (LOA) were narrower for EDV but remained wider for ESV and EF. TSR without NR reduced bias but failed to narrow LOA, with EF improving or unchanged in 35% of cases. While this level of consistency is limited, the findings suggest that TSR may preserve functional accuracy under certain conditions.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00950-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Computed tomography (CT) is valuable for assessing left ventricular (LV) function. However, it leads to increased data storage demands and energy consumption. Temporal super resolution (TSR) has the potential to reduce temporal data size while preserving accuracy. This study aimed to determine the feasibility of using TSR for temporal image compression in LV functional analysis. The study included 20 patients who underwent retrospective electrocardiogram (ECG)-gated cardiac CT, from which 20 cardiac phases per patient were acquired. TSR was applied to temporally compressed image data sets, with and without noise reduction (NR), using two NR levels: weak (30%) and strong (70%). Five data sets-including the original uncompressed data and four compressed versions-were analyzed for LV function using fully automated software. Bland-Altman plots and Pearson correlation coefficients were used to assess measurement agreement and reliability. The correlations between the uncompressed and compressed data sets for LV end-systolic volumes (ESVs), end-diastolic volumes (EDVs), and ejection fractions (EFs) were strong (all r = 1.00, 95% CI = 1.00-1.00, all Ps < 0.0001). Bland-Altman analysis showed reduced bias in LV measurements when TSR was applied without NR, while bias increased when NR was applied at both levels. The limits of agreement (LOA) were narrower for EDV but remained wider for ESV and EF. TSR without NR reduced bias but failed to narrow LOA, with EF improving or unchanged in 35% of cases. While this level of consistency is limited, the findings suggest that TSR may preserve functional accuracy under certain conditions.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.