Maria Wahle, Philip M Remes, Vincent Albrecht, Michael Baggio Lorenz, Johannes Mueller-Reif, Sophia Steigerwald, Tim Heymann, Lili Niu, Philip Lössl, Stevan Horning, Cristina C Jacob, Matthias Mann
{"title":"A Novel Hybrid High-Speed Mass Spectrometer Allows Rapid Translation From Biomarker Candidates to Targeted Clinical Tests Using <sup>15</sup>N-Labeled Proteins.","authors":"Maria Wahle, Philip M Remes, Vincent Albrecht, Michael Baggio Lorenz, Johannes Mueller-Reif, Sophia Steigerwald, Tim Heymann, Lili Niu, Philip Lössl, Stevan Horning, Cristina C Jacob, Matthias Mann","doi":"10.1016/j.mcpro.2025.101050","DOIUrl":null,"url":null,"abstract":"<p><p>Recent developments in affinity binder or mass spectrometry (MS)-based plasma proteomics are now producing panels of potential biomarker candidates for diagnosis or prognosis. However, clinical validation and implementation of these biomarkers remain limited by the reliance on dated triple quadrupole MS technology. Here, we evaluate a novel hybrid high-speed mass spectrometer, Stellar MS, which integrates the robustness of triple quadrupoles with the enhanced capabilities of an advanced linear ion trap analyzer. This instrument allows for extremely rapid and sensitive parallel reaction monitoring (PRM) and MS3 targeting. The Stellar MS allowed targeting thousands of peptides originally measured on Orbitrap Astral MS, achieving high reproducibility and low coefficients of variation (CV) as well as sensitivity and specificity sufficient for many of the top 1000 plasma proteins. Furthermore, we developed targeted assays for alcohol-related liver disease (ALD) biomarkers, showcasing the potential of Stellar MS in clinical applications. Absolute quantification is typically a requirement for clinical assays, and we explore the use of <sup>15</sup>N-labeled protein standards in a rapid, streamlined, and generic manner. Our results indicate that the Stellar MS can bridge the gap between proteomics discovery and routine clinical testing, enhancing the diagnostic and prognostic utility of protein biomarkers.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"101050"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12455101/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.101050","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent developments in affinity binder or mass spectrometry (MS)-based plasma proteomics are now producing panels of potential biomarker candidates for diagnosis or prognosis. However, clinical validation and implementation of these biomarkers remain limited by the reliance on dated triple quadrupole MS technology. Here, we evaluate a novel hybrid high-speed mass spectrometer, Stellar MS, which integrates the robustness of triple quadrupoles with the enhanced capabilities of an advanced linear ion trap analyzer. This instrument allows for extremely rapid and sensitive parallel reaction monitoring (PRM) and MS3 targeting. The Stellar MS allowed targeting thousands of peptides originally measured on Orbitrap Astral MS, achieving high reproducibility and low coefficients of variation (CV) as well as sensitivity and specificity sufficient for many of the top 1000 plasma proteins. Furthermore, we developed targeted assays for alcohol-related liver disease (ALD) biomarkers, showcasing the potential of Stellar MS in clinical applications. Absolute quantification is typically a requirement for clinical assays, and we explore the use of 15N-labeled protein standards in a rapid, streamlined, and generic manner. Our results indicate that the Stellar MS can bridge the gap between proteomics discovery and routine clinical testing, enhancing the diagnostic and prognostic utility of protein biomarkers.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes