Explainable AI for Enhancing Efficiency of DL-Based Channel Estimation

Abdul Karim Gizzini;Yahia Medjahdi;Ali J. Ghandour;Laurent Clavier
{"title":"Explainable AI for Enhancing Efficiency of DL-Based Channel Estimation","authors":"Abdul Karim Gizzini;Yahia Medjahdi;Ali J. Ghandour;Laurent Clavier","doi":"10.1109/TMLCN.2025.3596548","DOIUrl":null,"url":null,"abstract":"The support of artificial intelligence (AI) based decision-making is a key element in future 6G networks. Moreover, AI is widely employed in critical applications such as autonomous driving and medical diagnosis. In such applications, using AI as black-box models is risky and challenging. Hence, it is crucial to understand and trust the decisions taken by these models. Tackling this issue can be achieved by developing explainable AI (XAI) schemes that aim to explain the logic behind the black-box model behavior, and thus, ensure its efficient and safe deployment. Highlighting the relevant inputs the black-box model uses to accomplish the desired prediction is essential towards ensuring its interpretability. Recently, we proposed a novel perturbation-based feature selection framework called XAI-CHEST and oriented toward channel estimation in wireless communications. This manuscript provides the detailed theoretical foundations of the XAI-CHEST framework. In particular, we derive the analytical expressions of the XAI-CHEST loss functions and the noise threshold fine-tuning optimization problem. Hence the designed XAI-CHEST delivers a smart low-complex one-shot input feature selection methodology for high-dimensional model input that can further improve the overall performance while optimizing the architecture of the employed model. Simulation results show that the XAI-CHEST framework outperforms the classical feature selection XAI schemes such as local interpretable model-agnostic explanations (LIME) and shapley additive explanations (SHAP), mainly in terms of interpretability resolution as well as providing better performance-complexity trade-off.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"3 ","pages":"976-996"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11115091","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11115091/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The support of artificial intelligence (AI) based decision-making is a key element in future 6G networks. Moreover, AI is widely employed in critical applications such as autonomous driving and medical diagnosis. In such applications, using AI as black-box models is risky and challenging. Hence, it is crucial to understand and trust the decisions taken by these models. Tackling this issue can be achieved by developing explainable AI (XAI) schemes that aim to explain the logic behind the black-box model behavior, and thus, ensure its efficient and safe deployment. Highlighting the relevant inputs the black-box model uses to accomplish the desired prediction is essential towards ensuring its interpretability. Recently, we proposed a novel perturbation-based feature selection framework called XAI-CHEST and oriented toward channel estimation in wireless communications. This manuscript provides the detailed theoretical foundations of the XAI-CHEST framework. In particular, we derive the analytical expressions of the XAI-CHEST loss functions and the noise threshold fine-tuning optimization problem. Hence the designed XAI-CHEST delivers a smart low-complex one-shot input feature selection methodology for high-dimensional model input that can further improve the overall performance while optimizing the architecture of the employed model. Simulation results show that the XAI-CHEST framework outperforms the classical feature selection XAI schemes such as local interpretable model-agnostic explanations (LIME) and shapley additive explanations (SHAP), mainly in terms of interpretability resolution as well as providing better performance-complexity trade-off.
提高基于dl的信道估计效率的可解释人工智能
基于人工智能(AI)的决策支持是未来6G网络的关键要素。此外,人工智能被广泛应用于自动驾驶和医疗诊断等关键应用。在这样的应用中,使用人工智能作为黑盒模型是有风险和挑战性的。因此,理解和信任这些模型所做的决定是至关重要的。解决这个问题可以通过开发可解释的AI (XAI)方案来实现,该方案旨在解释黑盒模型行为背后的逻辑,从而确保其高效和安全的部署。突出显示黑箱模型用于完成预期预测的相关输入对于确保其可解释性至关重要。最近,我们提出了一种新的基于微扰的特征选择框架,称为XAI-CHEST,并针对无线通信中的信道估计。本文为XAI-CHEST框架提供了详细的理论基础。特别地,我们推导了XAI-CHEST损失函数的解析表达式和噪声阈值微调优化问题。因此,设计的XAI-CHEST为高维模型输入提供了一种智能低复杂度的一次性输入特征选择方法,可以在优化所采用模型架构的同时进一步提高整体性能。仿真结果表明,XAI- chest框架优于经典的特征选择XAI方案,如局部可解释模型不可知解释(LIME)和shapley加性解释(SHAP),主要体现在可解释性分辨率和更好的性能复杂度权衡方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信