Orbital stability and strong instability of solitary waves for the Kadomtsev–Petviashvili equation with combined power nonlinearities

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Leijin Cao , Binhua Feng , Zhiqian He , Yichun Mo
{"title":"Orbital stability and strong instability of solitary waves for the Kadomtsev–Petviashvili equation with combined power nonlinearities","authors":"Leijin Cao ,&nbsp;Binhua Feng ,&nbsp;Zhiqian He ,&nbsp;Yichun Mo","doi":"10.1016/j.physd.2025.134875","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the orbital stability and strong instability of solitary waves for the two-dimensional Kadomtsev–Petviashvili equation with combined power nonlinearities <span><span><span><math><mrow><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>x</mi><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><msub><mrow><mrow><mo>(</mo><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>ϕ</mi><mo>|</mo></mrow></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mi>ϕ</mi><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>ϕ</mi><mo>|</mo></mrow></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mi>ϕ</mi><mo>)</mo></mrow></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>x</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>y</mi><mi>y</mi></mrow></msub><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>μ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. When <span><math><mrow><mn>1</mn><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></math></span>, we show that the set of solitary wave solutions is orbitally stable by using variational methods. When <span><math><mrow><mn>1</mn><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><mn>3</mn><mo>≤</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mn>5</mn></mrow></math></span>, we establish that all energy minimizers correspond to local minima of the associated energy functional and then the set of energy minimizers is orbitally stable. Furthermore, we show that the solitary waves are strongly unstable in the case of <span><math><mrow><mn>3</mn><mo>≤</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mn>5</mn></mrow></math></span> by blow-up. Our main results improve and complement the existing results in the literature recently.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"482 ","pages":"Article 134875"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925003525","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the orbital stability and strong instability of solitary waves for the two-dimensional Kadomtsev–Petviashvili equation with combined power nonlinearities (ϕt+ϕxxx+(μ|ϕ|p11ϕ+|ϕ|p21ϕ)x)x=ϕyy,where μ>0. When 1<p1<p2<73, we show that the set of solitary wave solutions is orbitally stable by using variational methods. When 1<p1<73 and 3p2<5, we establish that all energy minimizers correspond to local minima of the associated energy functional and then the set of energy minimizers is orbitally stable. Furthermore, we show that the solitary waves are strongly unstable in the case of 3p1<p2<5 by blow-up. Our main results improve and complement the existing results in the literature recently.
合并幂非线性Kadomtsev-Petviashvili方程孤立波的轨道稳定性和强不稳定性
本文研究了二维Kadomtsev-Petviashvili方程的轨道稳定性和强不稳定性,该方程具有组合幂非线性(ϕt+ϕxxx+(μ|ϕ|p1−1ϕ+|ϕ|p2−1ϕ)x)x=ϕyy,其中μ>;0。当1<;p1<p2<;73时,我们用变分方法证明了孤波解集是轨道稳定的。当1<;p1<;73和3≤p2<;5时,我们建立了所有能量极小值都对应于相关能量泛函的局部极小值,则能量极小值集合是轨道稳定的。进一步,我们通过放大证明了在3≤p1<;p2<;5的情况下,孤立波是强不稳定的。我们的主要结果改进和补充了最近文献中已有的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信