{"title":"Orbital stability and strong instability of solitary waves for the Kadomtsev–Petviashvili equation with combined power nonlinearities","authors":"Leijin Cao , Binhua Feng , Zhiqian He , Yichun Mo","doi":"10.1016/j.physd.2025.134875","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the orbital stability and strong instability of solitary waves for the two-dimensional Kadomtsev–Petviashvili equation with combined power nonlinearities <span><span><span><math><mrow><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>x</mi><mi>x</mi><mi>x</mi></mrow></msub><mo>+</mo><msub><mrow><mrow><mo>(</mo><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>ϕ</mi><mo>|</mo></mrow></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mi>ϕ</mi><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>ϕ</mi><mo>|</mo></mrow></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mi>ϕ</mi><mo>)</mo></mrow></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>x</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>y</mi><mi>y</mi></mrow></msub><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span>. When <span><math><mrow><mn>1</mn><mo><</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></math></span>, we show that the set of solitary wave solutions is orbitally stable by using variational methods. When <span><math><mrow><mn>1</mn><mo><</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><mn>3</mn><mo>≤</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mn>5</mn></mrow></math></span>, we establish that all energy minimizers correspond to local minima of the associated energy functional and then the set of energy minimizers is orbitally stable. Furthermore, we show that the solitary waves are strongly unstable in the case of <span><math><mrow><mn>3</mn><mo>≤</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mn>5</mn></mrow></math></span> by blow-up. Our main results improve and complement the existing results in the literature recently.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"482 ","pages":"Article 134875"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925003525","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the orbital stability and strong instability of solitary waves for the two-dimensional Kadomtsev–Petviashvili equation with combined power nonlinearities where . When , we show that the set of solitary wave solutions is orbitally stable by using variational methods. When and , we establish that all energy minimizers correspond to local minima of the associated energy functional and then the set of energy minimizers is orbitally stable. Furthermore, we show that the solitary waves are strongly unstable in the case of by blow-up. Our main results improve and complement the existing results in the literature recently.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.