Yutian Zhang , Jingru Wang , Hui Yang , Leting He , Miao Cui , Qinjie Ling , Jingjun He , Shan Gou , Fei Liu , Zhihui Cai , Zhi Huang
{"title":"Rapamycin coated selenium nanoparticles relieve oxidative senescence of vascular endothelium by mitophagy","authors":"Yutian Zhang , Jingru Wang , Hui Yang , Leting He , Miao Cui , Qinjie Ling , Jingjun He , Shan Gou , Fei Liu , Zhihui Cai , Zhi Huang","doi":"10.1016/j.redox.2025.103822","DOIUrl":null,"url":null,"abstract":"<div><div>Rapamycin (RPM) extends longevity in various species and combats vascular senescence related diseases. Selenium nanoparticles (SeNPs) have attracted attention as a potential therapy for cardiovascular diseases due to their excellent antioxidant and drug-carrying capacity. However, RPM coated SeNPs (RPM-SeNPs) have not been reported and their potential for preventing endothelial oxidative senescence remains unclear. In the present study, RPM-SeNPs were generated by selenite and RPM with ascorbic acid reduction. Stability and dispersity of SeNPs were increased by coating with RPM, resulting in an average diameter of 67.51 ± 2.07 nm with a RPM:Se molar ratio of 1:120. Notably, RPM-SeNPs exhibited ameliorative effects on oxidative endothelial senescence in mouse aortas or MAECs induced by paraquat or hydrogen peroxide, respectively. There were evidenced by decreased SA-β-gal activity, lower SASP levels, and decreased endothelial dysfunction. Mechanically, RPM-SeNPs reduced oxidative stress in endothelial cells by upregulating GPX4, particularly mitochondrial GPX4 (mtGPX4) that mitigated of ROS and relieved mitochondria dysfunction. By downregulating the PI3K/Akt/mTOR pathway, RPM-SeNPs inhibited ULK1 phosphorylation at Ser757, subsequently leading to the activation of mitophagy and the reversal of mitochondrial dysfunction, including mitochondrial membrane potential collapse and ATP deficiency. Thus, these results suggest that RPM-SeNPs rescue endothelial cells from oxidative stress induced senescence by upregulating mtGPX4 and activating mitophagy. These results provide insight into the mechanisms of functionalizing SeNPs for potentially treating senescence-related diseases.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"86 ","pages":"Article 103822"},"PeriodicalIF":11.9000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725003350","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rapamycin (RPM) extends longevity in various species and combats vascular senescence related diseases. Selenium nanoparticles (SeNPs) have attracted attention as a potential therapy for cardiovascular diseases due to their excellent antioxidant and drug-carrying capacity. However, RPM coated SeNPs (RPM-SeNPs) have not been reported and their potential for preventing endothelial oxidative senescence remains unclear. In the present study, RPM-SeNPs were generated by selenite and RPM with ascorbic acid reduction. Stability and dispersity of SeNPs were increased by coating with RPM, resulting in an average diameter of 67.51 ± 2.07 nm with a RPM:Se molar ratio of 1:120. Notably, RPM-SeNPs exhibited ameliorative effects on oxidative endothelial senescence in mouse aortas or MAECs induced by paraquat or hydrogen peroxide, respectively. There were evidenced by decreased SA-β-gal activity, lower SASP levels, and decreased endothelial dysfunction. Mechanically, RPM-SeNPs reduced oxidative stress in endothelial cells by upregulating GPX4, particularly mitochondrial GPX4 (mtGPX4) that mitigated of ROS and relieved mitochondria dysfunction. By downregulating the PI3K/Akt/mTOR pathway, RPM-SeNPs inhibited ULK1 phosphorylation at Ser757, subsequently leading to the activation of mitophagy and the reversal of mitochondrial dysfunction, including mitochondrial membrane potential collapse and ATP deficiency. Thus, these results suggest that RPM-SeNPs rescue endothelial cells from oxidative stress induced senescence by upregulating mtGPX4 and activating mitophagy. These results provide insight into the mechanisms of functionalizing SeNPs for potentially treating senescence-related diseases.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.