Convergence analysis of a dual-wind discontinuous Galerkin method for an elliptic optimal control problem with control constraints

IF 1.3 Q2 MATHEMATICS, APPLIED
Satyajith Bommana Boyana , Thomas Lewis , Sijing Liu , Yi Zhang
{"title":"Convergence analysis of a dual-wind discontinuous Galerkin method for an elliptic optimal control problem with control constraints","authors":"Satyajith Bommana Boyana ,&nbsp;Thomas Lewis ,&nbsp;Sijing Liu ,&nbsp;Yi Zhang","doi":"10.1016/j.rinam.2025.100624","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates a symmetric dual-wind discontinuous Galerkin (DWDG) method for solving an elliptic optimal control problem with control constraints. The governing constraint is an elliptic partial differential equation (PDE), which is discretized using the symmetric DWDG approach. We derive error estimates in the energy norm for both the state and the adjoint state, as well as in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm of the control variable. Numerical experiments are provided to demonstrate the robustness and effectiveness of the developed scheme.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100624"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates a symmetric dual-wind discontinuous Galerkin (DWDG) method for solving an elliptic optimal control problem with control constraints. The governing constraint is an elliptic partial differential equation (PDE), which is discretized using the symmetric DWDG approach. We derive error estimates in the energy norm for both the state and the adjoint state, as well as in the L2 norm of the control variable. Numerical experiments are provided to demonstrate the robustness and effectiveness of the developed scheme.
具有控制约束的椭圆型最优控制问题的双风不连续Galerkin方法的收敛性分析
研究了一类带控制约束的椭圆型最优控制问题的对称双风不连续Galerkin (DWDG)方法。控制约束是一个椭圆型偏微分方程(PDE),采用对称DWDG方法对其进行离散化。我们推导了状态和伴随状态的能量范数以及控制变量的L2范数中的误差估计。数值实验验证了该方法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信