Functional sub-states link conformational landscapes and protein evolution

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Morito Sakuma , Karol Buda , H. Adrian Bunzel , Christopher Frøhlich , Nobuhiko Tokuriki
{"title":"Functional sub-states link conformational landscapes and protein evolution","authors":"Morito Sakuma ,&nbsp;Karol Buda ,&nbsp;H. Adrian Bunzel ,&nbsp;Christopher Frøhlich ,&nbsp;Nobuhiko Tokuriki","doi":"10.1016/j.sbi.2025.103134","DOIUrl":null,"url":null,"abstract":"<div><div>The intrinsic conformational flexibility of proteins creates structural heterogeneity, giving rise to conformational ensembles within the energy landscape. When conformational ensembles harbor distinct functional sub-states, mutations can reshape the conformational landscape, thereby altering the distribution of functional sub-states and driving the evolution of novel functions. In this review, we provide a conceptual framework that elucidates the importance of functional sub-states and how evolution can select them. We highlight key studies that have uncovered functional sub-states and discuss recent insights into the transitions of functional sub-states during evolutionary trajectories. Finally, we outline critical techniques for studying functional sub-states, address the challenges faced in analyzing these sub-states, and explore future advancements in the field of protein evolution.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"94 ","pages":"Article 103134"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25001526","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The intrinsic conformational flexibility of proteins creates structural heterogeneity, giving rise to conformational ensembles within the energy landscape. When conformational ensembles harbor distinct functional sub-states, mutations can reshape the conformational landscape, thereby altering the distribution of functional sub-states and driving the evolution of novel functions. In this review, we provide a conceptual framework that elucidates the importance of functional sub-states and how evolution can select them. We highlight key studies that have uncovered functional sub-states and discuss recent insights into the transitions of functional sub-states during evolutionary trajectories. Finally, we outline critical techniques for studying functional sub-states, address the challenges faced in analyzing these sub-states, and explore future advancements in the field of protein evolution.
功能亚态连接构象景观和蛋白质进化
蛋白质固有的构象灵活性创造了结构的异质性,在能量景观中产生了构象集成。当构象集合体包含不同的功能亚态时,突变可以重塑构象景观,从而改变功能亚态的分布并驱动新功能的进化。在这篇综述中,我们提供了一个概念框架,阐明了功能子状态的重要性以及进化如何选择它们。我们重点介绍了发现功能亚状态的关键研究,并讨论了进化轨迹中功能亚状态转变的最新见解。最后,我们概述了研究功能亚状态的关键技术,解决了分析这些亚状态所面临的挑战,并探讨了蛋白质进化领域的未来进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信