{"title":"Advancing triple-negative breast cancer therapy: 3D in vitro models to unravel drug resistance mechanisms and tumor microenvironment interactions","authors":"Gomathy Baskar , Thirunavukkarasu Palaniyandi","doi":"10.1016/j.acthis.2025.152282","DOIUrl":null,"url":null,"abstract":"<div><div>Triple-negative breast cancer (TNBC) poses considerable clinical challenges due to its aggressive nature, early metastasis, and limited treatment options. The simplified 2D models and the physiological differences in animal models often result in inconsistent responses to anticancer drugs. To tackle these challenges, three-dimensional (3D) in vitro bioengineered models that accurately replicate the <em>in vivo</em> tumor microenvironment (TME) have been developed, offering a more reliable platform for preclinical drug testing. Recent advancements in cell culture techniques have facilitated the creation of 3D models derived from patient tissues and tumors, which effectively mimic the native tissue environment and exhibit drug sensitivity and cytotoxicity behaviors similar to those observed in vivo. It is increasingly acknowledged that the extracellular matrix and cellular diversity within the TME significantly influence the fate of cancer cells. Consequently, strategies to explore drug resistance mechanisms must account for both microenvironmental factors and genetic mutations. This review examines 3D in vitro model systems that integrate microenvironmental influences to investigate drug resistance mechanisms in breast cancer. We discussed various bioengineered models, including spheroid-based, biomaterial-based (such as polymeric scaffolds and hydrogels), patient-derived xenograft (PDX), 3D bioprinting, and microfluidic chip-based models. Additionally, we discuss the relevance of these 3D models in understanding the effects of TME signals on drug response and resistance, as well as their potential for developing strategies to overcome drug resistance and optimize treatment regimens.</div></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"127 4","pages":"Article 152282"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta histochemica","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065128125000546","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Triple-negative breast cancer (TNBC) poses considerable clinical challenges due to its aggressive nature, early metastasis, and limited treatment options. The simplified 2D models and the physiological differences in animal models often result in inconsistent responses to anticancer drugs. To tackle these challenges, three-dimensional (3D) in vitro bioengineered models that accurately replicate the in vivo tumor microenvironment (TME) have been developed, offering a more reliable platform for preclinical drug testing. Recent advancements in cell culture techniques have facilitated the creation of 3D models derived from patient tissues and tumors, which effectively mimic the native tissue environment and exhibit drug sensitivity and cytotoxicity behaviors similar to those observed in vivo. It is increasingly acknowledged that the extracellular matrix and cellular diversity within the TME significantly influence the fate of cancer cells. Consequently, strategies to explore drug resistance mechanisms must account for both microenvironmental factors and genetic mutations. This review examines 3D in vitro model systems that integrate microenvironmental influences to investigate drug resistance mechanisms in breast cancer. We discussed various bioengineered models, including spheroid-based, biomaterial-based (such as polymeric scaffolds and hydrogels), patient-derived xenograft (PDX), 3D bioprinting, and microfluidic chip-based models. Additionally, we discuss the relevance of these 3D models in understanding the effects of TME signals on drug response and resistance, as well as their potential for developing strategies to overcome drug resistance and optimize treatment regimens.
期刊介绍:
Acta histochemica, a journal of structural biochemistry of cells and tissues, publishes original research articles, short communications, reviews, letters to the editor, meeting reports and abstracts of meetings. The aim of the journal is to provide a forum for the cytochemical and histochemical research community in the life sciences, including cell biology, biotechnology, neurobiology, immunobiology, pathology, pharmacology, botany, zoology and environmental and toxicological research. The journal focuses on new developments in cytochemistry and histochemistry and their applications. Manuscripts reporting on studies of living cells and tissues are particularly welcome. Understanding the complexity of cells and tissues, i.e. their biocomplexity and biodiversity, is a major goal of the journal and reports on this topic are especially encouraged. Original research articles, short communications and reviews that report on new developments in cytochemistry and histochemistry are welcomed, especially when molecular biology is combined with the use of advanced microscopical techniques including image analysis and cytometry. Letters to the editor should comment or interpret previously published articles in the journal to trigger scientific discussions. Meeting reports are considered to be very important publications in the journal because they are excellent opportunities to present state-of-the-art overviews of fields in research where the developments are fast and hard to follow. Authors of meeting reports should consult the editors before writing a report. The editorial policy of the editors and the editorial board is rapid publication. Once a manuscript is received by one of the editors, an editorial decision about acceptance, revision or rejection will be taken within a month. It is the aim of the publishers to have a manuscript published within three months after the manuscript has been accepted