Maria Cidinaria Silva Alves, Carlos André Dos Santos-Silva, Carolline de Jesús-Pires, Flávia Czekalski de Araújo, José Ribamar Costa Ferreira-Neto, Gabriella Frosi, Marx Oliveira-Lima, Fernanda Alves de Andrade, Ana Maria Benko-Iseppon, Valesca Pandolfi
{"title":"Structural and transcriptional characterization of Thaumatin-Like Proteins in Cenostigma pyramidale under salt stress.","authors":"Maria Cidinaria Silva Alves, Carlos André Dos Santos-Silva, Carolline de Jesús-Pires, Flávia Czekalski de Araújo, José Ribamar Costa Ferreira-Neto, Gabriella Frosi, Marx Oliveira-Lima, Fernanda Alves de Andrade, Ana Maria Benko-Iseppon, Valesca Pandolfi","doi":"10.1007/s10709-025-00242-7","DOIUrl":null,"url":null,"abstract":"<p><p>Thaumatin-Like Proteins (TLPs) play a crucial role against biotic and abiotic stresses, acting as signaling molecules in transduction pathways and exhibiting antimicrobial activity. The present study aimed to characterize TLPs of Cenostigma pyramidale (Fabaceae) and analyze their expression (RNA-Seq) in root tissues under salt stress. A total of 36 CpTLPs were identified, which showed the characteristic TLP domain and a signal peptide in the N-terminal region. Multiple sequence alignment revealed the conservation of 16 cysteine residues, a signature motif, and a \"REDDD\" motif, all characteristic of TLPs. Three typical TLPs domains were identified in the three-dimensional modeling of the six analyzed sequences. The molecular dynamics simulation revealed stability along most of these sequences. RNA-seq under salt stress showed that six C. pyramidale TLPs (CpTLP2, CpTLP3, CpTLP5, CpTLP17, CpTLP20, and CpTLP31) were differentially expressed. The RT-qPCR expression validation was performed in leaf and root tissues (30 min, 2 h, and 11 days after salt stress). In leaf tissue, most CpTLPs were induced in at least one time point analyzed. In root tissue, we observed validation of the RNA-Seq expression data of CpTLP3, CpTLP5, CpTLP20, and CpTLP31, as well as distinct expression patterns between leaf and root tissues. Our results showed significant variations in the transcriptional response of the TLP family across different plant tissues and associated specific genes of this family with salt tolerance in C. pyramidale. These findings enhance the understanding of the role of TLPs in salt stress and may be useful in genetic improvement strategies to increase salt tolerance.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"153 1","pages":"26"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10709-025-00242-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Thaumatin-Like Proteins (TLPs) play a crucial role against biotic and abiotic stresses, acting as signaling molecules in transduction pathways and exhibiting antimicrobial activity. The present study aimed to characterize TLPs of Cenostigma pyramidale (Fabaceae) and analyze their expression (RNA-Seq) in root tissues under salt stress. A total of 36 CpTLPs were identified, which showed the characteristic TLP domain and a signal peptide in the N-terminal region. Multiple sequence alignment revealed the conservation of 16 cysteine residues, a signature motif, and a "REDDD" motif, all characteristic of TLPs. Three typical TLPs domains were identified in the three-dimensional modeling of the six analyzed sequences. The molecular dynamics simulation revealed stability along most of these sequences. RNA-seq under salt stress showed that six C. pyramidale TLPs (CpTLP2, CpTLP3, CpTLP5, CpTLP17, CpTLP20, and CpTLP31) were differentially expressed. The RT-qPCR expression validation was performed in leaf and root tissues (30 min, 2 h, and 11 days after salt stress). In leaf tissue, most CpTLPs were induced in at least one time point analyzed. In root tissue, we observed validation of the RNA-Seq expression data of CpTLP3, CpTLP5, CpTLP20, and CpTLP31, as well as distinct expression patterns between leaf and root tissues. Our results showed significant variations in the transcriptional response of the TLP family across different plant tissues and associated specific genes of this family with salt tolerance in C. pyramidale. These findings enhance the understanding of the role of TLPs in salt stress and may be useful in genetic improvement strategies to increase salt tolerance.
期刊介绍:
Genetica publishes papers dealing with genetics, genomics, and evolution. Our journal covers novel advances in the fields of genomics, conservation genetics, genotype-phenotype interactions, evo-devo, population and quantitative genetics, and biodiversity. Genetica publishes original research articles addressing novel conceptual, experimental, and theoretical issues in these areas, whatever the taxon considered. Biomedical papers and papers on breeding animal and plant genetics are not within the scope of Genetica, unless framed in an evolutionary context. Recent advances in genetics, genomics and evolution are also published in thematic issues and synthesis papers published by experts in the field.