A multi-view validation framework for LLM-generated knowledge graphs of chronic kidney disease.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Aditya Kumar, Dilpreet Singh, Mario Cypko, Oliver Amft
{"title":"A multi-view validation framework for LLM-generated knowledge graphs of chronic kidney disease.","authors":"Aditya Kumar, Dilpreet Singh, Mario Cypko, Oliver Amft","doi":"10.1007/s11548-025-03495-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The goal of our work is to develop a multi-view validation framework for evaluating LLM-generated knowledge graph (KG) triples. The proposed approach aims to address the lack of established validation procedure in the context of LLM-supported KG construction.</p><p><strong>Methods: </strong>The proposed framework evaluates the LLM-generated triples across three dimensions: semantic plausibility, ontology-grounded type compatibility, and structural importance. We demonstrate the performance for GPT-4 generated concept-specific (e.g., for medications, diagnosis, procedures) triples in the context of chronic kidney disease (CKD).</p><p><strong>Results: </strong>The proposed approach consistently achieves high-quality results across evaluated GPT-4 generated triples, strong semantic plausibility (semantic score mean: 0.79), excellent type compatibility (type score mean: 0.84), and high structural importance of entities within the CKD knowledge domain (ResourceRank mean: 0.94).</p><p><strong>Conclusion: </strong>The validation framework offers a reliable and scalable method for evaluating quality and validity of LLM-generated triples across three views: semantic plausibility, type compatibility, and structural importance. The framework demonstrates robust performance in filtering high-quality triples and lays a strong foundation for fast and reliable medical KG construction and validation.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03495-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The goal of our work is to develop a multi-view validation framework for evaluating LLM-generated knowledge graph (KG) triples. The proposed approach aims to address the lack of established validation procedure in the context of LLM-supported KG construction.

Methods: The proposed framework evaluates the LLM-generated triples across three dimensions: semantic plausibility, ontology-grounded type compatibility, and structural importance. We demonstrate the performance for GPT-4 generated concept-specific (e.g., for medications, diagnosis, procedures) triples in the context of chronic kidney disease (CKD).

Results: The proposed approach consistently achieves high-quality results across evaluated GPT-4 generated triples, strong semantic plausibility (semantic score mean: 0.79), excellent type compatibility (type score mean: 0.84), and high structural importance of entities within the CKD knowledge domain (ResourceRank mean: 0.94).

Conclusion: The validation framework offers a reliable and scalable method for evaluating quality and validity of LLM-generated triples across three views: semantic plausibility, type compatibility, and structural importance. The framework demonstrates robust performance in filtering high-quality triples and lays a strong foundation for fast and reliable medical KG construction and validation.

llm生成的慢性肾脏疾病知识图谱的多视图验证框架。
目的:我们的工作目标是开发一个多视图验证框架,用于评估法学硕士生成的知识图谱(KG)三元组。提出的方法旨在解决llm支持的KG构建中缺乏既定验证程序的问题。方法:提出的框架从三个维度评估llm生成的三元组:语义合理性、基于本体的类型兼容性和结构重要性。我们展示了慢性肾脏疾病(CKD)背景下GPT-4产生的概念特异性(例如,药物,诊断,程序)三元组的性能。结果:所提出的方法在评估的GPT-4生成的三元组中始终获得高质量的结果,具有强的语义合理性(语义得分平均值:0.79),出色的类型兼容性(类型得分平均值:0.84),以及CKD知识领域内实体的高结构重要性(ResourceRank平均值:0.94)。结论:验证框架提供了一种可靠且可扩展的方法来评估llm生成的三元组的质量和有效性,包括三个视图:语义合理性、类型兼容性和结构重要性。该框架在过滤高质量三元组方面表现出强大的性能,为快速可靠的医疗KG构建和验证奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信