{"title":"Motor imagery decoding network with multisubject dynamic transfer.","authors":"Zhi Li, Mingai Li, Yufei Yang","doi":"10.1186/s40708-025-00267-w","DOIUrl":null,"url":null,"abstract":"<p><p>Brain computer interface (BCI) provides a promising and intelligent rehabilitation method for motor function, and it is crucial to acquire the patient's movement intentions accurately through decoding motor imagery EEG (MI-EEG) . Because of the inter-individual heterogeneity, the decoding model should demonstrate dynamic adaptation abilities.Domain adaptation (DA) is effective to enhance model generalization by reducing the inherent distribution difference among subjects. However, the existing DA methods usually mix the multiple source domains into a new domain, the resulting multi-source domain conflict may cause negative transfer. In this paper, we propose a multi-source dynamic conditional domain adaptation network (MSDCDA). First, a multi-channel attention block is employed in the feature extractor to focus on the channels relevant to the corresponding MI task. Subsequently, the shallow spatial-temporal features are extracted using a spatial-temporal convolution block. And a dynamic residual block is applied in the feature extractor to dynamically adapt specific features of each subject to alleviate conflicts among multiple source domains since each domain is viewed as a distribution of electroencephalogram (EEG) signals. Furthermore, we employ the Margin Disparity Discrepancy (MDD) as the metric to achieve conditional distribution domain adaptation between the source and target domains through adversarial learning with an auxiliary classifier. MSDCDA achieved accuracies of 78.55 <math><mo>%</mo></math> and 85.08 <math><mo>%</mo></math> on Datasets IIa and IIb of BCI Competition IV, respectively. Our experimental results demonstrate that MSDCDA can effectively address multi-source domain conflicts and significantly enhance the decoding performance of target subjects. This study positively facilitates the application of BCI based on motor function rehabilitation.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"12 1","pages":"20"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12356803/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-025-00267-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Brain computer interface (BCI) provides a promising and intelligent rehabilitation method for motor function, and it is crucial to acquire the patient's movement intentions accurately through decoding motor imagery EEG (MI-EEG) . Because of the inter-individual heterogeneity, the decoding model should demonstrate dynamic adaptation abilities.Domain adaptation (DA) is effective to enhance model generalization by reducing the inherent distribution difference among subjects. However, the existing DA methods usually mix the multiple source domains into a new domain, the resulting multi-source domain conflict may cause negative transfer. In this paper, we propose a multi-source dynamic conditional domain adaptation network (MSDCDA). First, a multi-channel attention block is employed in the feature extractor to focus on the channels relevant to the corresponding MI task. Subsequently, the shallow spatial-temporal features are extracted using a spatial-temporal convolution block. And a dynamic residual block is applied in the feature extractor to dynamically adapt specific features of each subject to alleviate conflicts among multiple source domains since each domain is viewed as a distribution of electroencephalogram (EEG) signals. Furthermore, we employ the Margin Disparity Discrepancy (MDD) as the metric to achieve conditional distribution domain adaptation between the source and target domains through adversarial learning with an auxiliary classifier. MSDCDA achieved accuracies of 78.55 and 85.08 on Datasets IIa and IIb of BCI Competition IV, respectively. Our experimental results demonstrate that MSDCDA can effectively address multi-source domain conflicts and significantly enhance the decoding performance of target subjects. This study positively facilitates the application of BCI based on motor function rehabilitation.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing