{"title":"[Effect of transcutaneous phrenic nerve stimulation in preventing ventilator-induced diaphragmatic dysfunction in invasive mechanically ventilated patients].","authors":"Yuhua Shen, Hongyan Zhang, Lingyan Wang, Xianbin Song, Xianjiang Wang, Aili Cao","doi":"10.3760/cma.j.cn121430-20240111-00037","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore the preventive effect of transcutaneous phrenic nerve stimulation on ventilator-induced diaphragmatic dysfunction (VIDD) in patients requiring invasive mechanical ventilation.</p><p><strong>Methods: </strong>A randomized controlled trial was conducted. The patients requiring invasive mechanical ventilation admitted to the intensive care unit (ICU) of Jiaxing First Hospital from November 2022 to December 2023 were enrolled. Participants were randomized into the control group and the observation group using a random number table. The control group was given ICU standardized nursing intervention, including turning over and slapping the back, raising the head of the bed, sputum aspiration on demand, aerosol inhalation, oral care, and monitoring of airbag pressure and gastric retention, the observation group was given additional transcutaneous phrenic nerve stimulation intervention on the basis of ICU standardized nursing intervention. The stimulation intensity was set to 10 U, the pulse frequency was set to 40 Hz, and the stimulation frequency was set to 12 times/min. Transcutaneous phrenic nerve stimulation was administered once a day for 30 minutes each time, for a total of 5 days. Diaphragm thickening fraction (DTF) and arterial blood gas parameters on days 1, 3, and 5 of intervention were compared between the two groups. After 5 days of intervention, other parameters including the incidence of VIDD, duration of mechanical ventilation, and length of ICU stay were compared.</p><p><strong>Results: </strong>A total of 120 patients requiring invasive mechanical ventilation were enrolled, with 16 dropouts (dropout rate was 13.33%). Ultimately, 51 patients in the control group and 53 patients in the observation group were analyzed. Baseline characteristics, including gender, age, body mass index (BMI), acute physiology and chronic health evaluation II (APACHE II) score, albumin (Alb), hemoglobin (Hb), and disease type, showed no significant differences between the two groups. DTF in both groups gradually increased over duration of intervention [DTF on days 1, 3, and 5 in the control group was (20.83±2.33)%, (21.92±1.27)%, and (23.93±2.33)%, respectively, and that in the observation group was (20.89±1.96)%, (22.56±1.64)%, and (25.34±2.38)%, respectively], with more significant changes in DTF in the observation group, showing time effects (F<sub>time</sub> = 105.975, P < 0.001), intervention effects (F<sub>intervention</sub> = 7.378, P = 0.008), and interaction effects (F<sub>interaction</sub> = 3.322, P = 0.038). Arterial blood gas parameters did not differ significantly before intervention between the groups, but after 5 days of intervention, arterial partial pressure of oxygen (PaO<sub>2</sub>) in the observation group was significantly higher than that in the control group [mmHg (1 mmHg≈0.133 kPa): 100.72±15.75 vs. 93.62±15.54, P < 0.05], and arterial partial pressure of carbon dioxide (PaCO<sub>2</sub>) was significantly lower than that in the control group (mmHg: 36.53±3.10 vs. 37.69±2.02, P < 0.05). At 5 days of intervention, the incidence of VIDD in the observation group was significantly lower than that in the control group [15.09% (8/53) vs. 37.25% (19/51), P < 0.05], and both duration of mechanical ventilation and length of ICU stay were significantly shorter than those in the control group [duration of mechanical ventilation (days): 7.93±2.06 vs. 8.77±1.76, length of ICU stay (days): 9.64±2.35 vs. 11.01±2.01, both P < 0.05].</p><p><strong>Conclusions: </strong>Transcutaneous phrenic nerve stimulation can improve diaphragmatic and respiratory function in patients receiving invasive mechanical ventilation, reduce the incidence of VIDD, and shorten the duration of mechanical ventilation and length of ICU stay.</p>","PeriodicalId":24079,"journal":{"name":"Zhonghua wei zhong bing ji jiu yi xue","volume":"37 4","pages":"343-347"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhonghua wei zhong bing ji jiu yi xue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121430-20240111-00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To explore the preventive effect of transcutaneous phrenic nerve stimulation on ventilator-induced diaphragmatic dysfunction (VIDD) in patients requiring invasive mechanical ventilation.
Methods: A randomized controlled trial was conducted. The patients requiring invasive mechanical ventilation admitted to the intensive care unit (ICU) of Jiaxing First Hospital from November 2022 to December 2023 were enrolled. Participants were randomized into the control group and the observation group using a random number table. The control group was given ICU standardized nursing intervention, including turning over and slapping the back, raising the head of the bed, sputum aspiration on demand, aerosol inhalation, oral care, and monitoring of airbag pressure and gastric retention, the observation group was given additional transcutaneous phrenic nerve stimulation intervention on the basis of ICU standardized nursing intervention. The stimulation intensity was set to 10 U, the pulse frequency was set to 40 Hz, and the stimulation frequency was set to 12 times/min. Transcutaneous phrenic nerve stimulation was administered once a day for 30 minutes each time, for a total of 5 days. Diaphragm thickening fraction (DTF) and arterial blood gas parameters on days 1, 3, and 5 of intervention were compared between the two groups. After 5 days of intervention, other parameters including the incidence of VIDD, duration of mechanical ventilation, and length of ICU stay were compared.
Results: A total of 120 patients requiring invasive mechanical ventilation were enrolled, with 16 dropouts (dropout rate was 13.33%). Ultimately, 51 patients in the control group and 53 patients in the observation group were analyzed. Baseline characteristics, including gender, age, body mass index (BMI), acute physiology and chronic health evaluation II (APACHE II) score, albumin (Alb), hemoglobin (Hb), and disease type, showed no significant differences between the two groups. DTF in both groups gradually increased over duration of intervention [DTF on days 1, 3, and 5 in the control group was (20.83±2.33)%, (21.92±1.27)%, and (23.93±2.33)%, respectively, and that in the observation group was (20.89±1.96)%, (22.56±1.64)%, and (25.34±2.38)%, respectively], with more significant changes in DTF in the observation group, showing time effects (Ftime = 105.975, P < 0.001), intervention effects (Fintervention = 7.378, P = 0.008), and interaction effects (Finteraction = 3.322, P = 0.038). Arterial blood gas parameters did not differ significantly before intervention between the groups, but after 5 days of intervention, arterial partial pressure of oxygen (PaO2) in the observation group was significantly higher than that in the control group [mmHg (1 mmHg≈0.133 kPa): 100.72±15.75 vs. 93.62±15.54, P < 0.05], and arterial partial pressure of carbon dioxide (PaCO2) was significantly lower than that in the control group (mmHg: 36.53±3.10 vs. 37.69±2.02, P < 0.05). At 5 days of intervention, the incidence of VIDD in the observation group was significantly lower than that in the control group [15.09% (8/53) vs. 37.25% (19/51), P < 0.05], and both duration of mechanical ventilation and length of ICU stay were significantly shorter than those in the control group [duration of mechanical ventilation (days): 7.93±2.06 vs. 8.77±1.76, length of ICU stay (days): 9.64±2.35 vs. 11.01±2.01, both P < 0.05].
Conclusions: Transcutaneous phrenic nerve stimulation can improve diaphragmatic and respiratory function in patients receiving invasive mechanical ventilation, reduce the incidence of VIDD, and shorten the duration of mechanical ventilation and length of ICU stay.