Lu Liu, Danping Wu, Zhiwen Qian, Ying Jiang, Yilan You, YiDa Wang, Feng Zhang, Xin Ning, Jie Mei, Jabed Iqbal, Yanfang Gu, Yan Zhang
{"title":"Empowering hypoxia to convert cold tumors into hot tumors for breast cancer immunotherapy.","authors":"Lu Liu, Danping Wu, Zhiwen Qian, Ying Jiang, Yilan You, YiDa Wang, Feng Zhang, Xin Ning, Jie Mei, Jabed Iqbal, Yanfang Gu, Yan Zhang","doi":"10.1038/s41420-025-02682-8","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer remains the most common cancer among women globally and a leading cause of cancer-related death. Despite the promise of immunotherapy for triple-negative breast cancer (TNBC), its overall effectiveness is hindered by the cold tumor microenvironment (TME), characterized by sparse immune cell infiltration. This review explores the pivotal role of hypoxia in shaping the breast cancer TME and its influence on immunotherapy efficacy. As a defining feature of most solid tumors, including breast cancer, hypoxia drives aggressive tumor behavior, metastasis, and treatment resistance. The hypoxic TME promotes immune evasion and maintains the cold tumor phenotype. Targeting hypoxia offers a potential strategy for transforming cold breast tumors into hot tumors that respond more effectively to immunotherapy. This review consolidates existing insights into the interplay between hypoxia, tumor immunophenotypes, and immunotherapy in breast cancer. By analyzing the mechanisms through which hypoxia modulates the TME and immune response, it proposes innovative strategies to enhance immunotherapy outcomes. This comprehensive analysis lays the groundwork for developing more effective combination therapies to improve breast cancer prognosis.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"381"},"PeriodicalIF":7.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12354766/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02682-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer remains the most common cancer among women globally and a leading cause of cancer-related death. Despite the promise of immunotherapy for triple-negative breast cancer (TNBC), its overall effectiveness is hindered by the cold tumor microenvironment (TME), characterized by sparse immune cell infiltration. This review explores the pivotal role of hypoxia in shaping the breast cancer TME and its influence on immunotherapy efficacy. As a defining feature of most solid tumors, including breast cancer, hypoxia drives aggressive tumor behavior, metastasis, and treatment resistance. The hypoxic TME promotes immune evasion and maintains the cold tumor phenotype. Targeting hypoxia offers a potential strategy for transforming cold breast tumors into hot tumors that respond more effectively to immunotherapy. This review consolidates existing insights into the interplay between hypoxia, tumor immunophenotypes, and immunotherapy in breast cancer. By analyzing the mechanisms through which hypoxia modulates the TME and immune response, it proposes innovative strategies to enhance immunotherapy outcomes. This comprehensive analysis lays the groundwork for developing more effective combination therapies to improve breast cancer prognosis.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.