{"title":"Abemaciclib impairs glioblastoma sphere formation by targeting the GSK3β-mediated transcriptional regulation of CD44 and TCF7L2","authors":"Muh-Lii Liang, Chun-Han Chen, Ya-Ching Lin, Yu-Chen Lin, Yun-Ru Liu, Yi-Huei Ding, Cheng-Ying Chu, Tsung-Han Hsieh","doi":"10.1038/s41417-025-00955-z","DOIUrl":null,"url":null,"abstract":"Glioblastoma multiforme (GBM) is an aggressive brain tumor partly driven by cancer stem cells (CSCs). Abemaciclib demonstrates the potential for treating GBM, although its mechanisms beyond RB phosphorylation are not fully understood. This study reveals that Abemaciclib diminishes GBM sphere formation by influencing EMT pathways via GSK3β-mediated regulation of CD44 and TCF7L2. Treatment with Abemaciclib significantly hindered sphere formation in GBM cells, and transcriptomic analysis indicated EMT pathways suppression. Mechanistically, Abemaciclib consistently lowered the expression of CD44 and TCF7L2 in both parental and sphere cells by inhibiting GSK3β phosphorylation. A pharmacological GSK3β inhibitor produced similar effects, reinforcing the existence of a GSK3β-CD44/TCF7L2 axis. Moreover, orthotopic xenografts confirmed reduced tumor growth and CD44 expression in vivo. Analyses of TCGA and CGGA datasets revealed that the mesenchymal GBM subtype (MES-GBM), linked with poor outcomes, exhibits elevated EMT gene expression. Treatment of MES-like LN229 cells with Abemaciclib resulted in decreased phosphorylation of GSK3β and reductions in EMT-related gene expression. Our findings highlight a novel EMT-suppressive action of Abemaciclib, illustrating its therapeutic potential for targeting the CSCs and for treating the MES-GBM. This research provides mechanistic insights and justification for repurposing Abemaciclib as targeted therapies for aggressive glioblastoma.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"32 10","pages":"1120-1132"},"PeriodicalIF":5.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41417-025-00955-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor partly driven by cancer stem cells (CSCs). Abemaciclib demonstrates the potential for treating GBM, although its mechanisms beyond RB phosphorylation are not fully understood. This study reveals that Abemaciclib diminishes GBM sphere formation by influencing EMT pathways via GSK3β-mediated regulation of CD44 and TCF7L2. Treatment with Abemaciclib significantly hindered sphere formation in GBM cells, and transcriptomic analysis indicated EMT pathways suppression. Mechanistically, Abemaciclib consistently lowered the expression of CD44 and TCF7L2 in both parental and sphere cells by inhibiting GSK3β phosphorylation. A pharmacological GSK3β inhibitor produced similar effects, reinforcing the existence of a GSK3β-CD44/TCF7L2 axis. Moreover, orthotopic xenografts confirmed reduced tumor growth and CD44 expression in vivo. Analyses of TCGA and CGGA datasets revealed that the mesenchymal GBM subtype (MES-GBM), linked with poor outcomes, exhibits elevated EMT gene expression. Treatment of MES-like LN229 cells with Abemaciclib resulted in decreased phosphorylation of GSK3β and reductions in EMT-related gene expression. Our findings highlight a novel EMT-suppressive action of Abemaciclib, illustrating its therapeutic potential for targeting the CSCs and for treating the MES-GBM. This research provides mechanistic insights and justification for repurposing Abemaciclib as targeted therapies for aggressive glioblastoma.
期刊介绍:
Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair.
Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.