Chuang Wang, René C. L. Olsthoorn and Huub J. M. de Groot*,
{"title":"Directed Evolution of Branched-Chain α-Keto Acid Decarboxylase for 3-Hydroxypropionic Acid Production in Escherichia coli via Oxaloacetate","authors":"Chuang Wang, René C. L. Olsthoorn and Huub J. M. de Groot*, ","doi":"10.1021/acssynbio.5c00267","DOIUrl":null,"url":null,"abstract":"<p >3-Hydroxypropionic acid (3-HP) serves as a crucial platform chemical with diverse applications across various industries. In this study, the oxaloacetate pathway was utilized for 3-HP production. This pathway involves the decarboxylation of oxaloacetate into malonic semialdehyde, catalyzed by branched-chain α-keto acid decarboxylase (KdcA), which is subsequently reduced to 3-HP by dehydrogenases. Directed evolution of KdcA was carried out to enhance its catalytic efficiency toward oxaloacetate, resulting in a KdcA<sup>M8</sup> mutant with the following substitutions: S286R, S287T, F381H, F382P, L534S, L535F, M538T, and G539F. Compared to wild-type (WT) KdcA, KdcA<sup>M8</sup> exhibits a lower <i>K</i><sub>M</sub> value toward oxaloacetate (<i>K</i><sub>M</sub> = 1.15 mM vs <i>K</i><sub>M</sub> > 25 mM). Among these mutations, the single mutants S286R and S287T exhibited 5.5-fold and 1.3-fold increased activities, respectively. Instead of WT KdcA, the KdcA<sup>M8</sup> mutant was integrated into <i>Escherichia coli</i> (<i>E. coli</i>) BL21 strain, resulting in the production of 3-HP at a concentration of 0.11 mM. To further improve 3-HP production, two dehydrogenases were compared for the downstream conversion of malonic semialdehyde into 3-HP, and two carboxylases were explored to enhance the upstream precursor supply of oxaloacetate. Additionally, the growth conditions were optimized. Finally, a nonnatural oxaloacetate pathway was successfully engineered in the <i>E. coli</i> BL21 strain, achieving a 3-HP titer of approximately 0.71 mM from glucose. This work illustrates that protein engineering is a powerful tool for modulating flux in the target pathway and holds promise for the future development of the oxaloacetate pathway to improve the 3-HP yield.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":"14 9","pages":"3487–3496"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acssynbio.5c00267","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssynbio.5c00267","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
3-Hydroxypropionic acid (3-HP) serves as a crucial platform chemical with diverse applications across various industries. In this study, the oxaloacetate pathway was utilized for 3-HP production. This pathway involves the decarboxylation of oxaloacetate into malonic semialdehyde, catalyzed by branched-chain α-keto acid decarboxylase (KdcA), which is subsequently reduced to 3-HP by dehydrogenases. Directed evolution of KdcA was carried out to enhance its catalytic efficiency toward oxaloacetate, resulting in a KdcAM8 mutant with the following substitutions: S286R, S287T, F381H, F382P, L534S, L535F, M538T, and G539F. Compared to wild-type (WT) KdcA, KdcAM8 exhibits a lower KM value toward oxaloacetate (KM = 1.15 mM vs KM > 25 mM). Among these mutations, the single mutants S286R and S287T exhibited 5.5-fold and 1.3-fold increased activities, respectively. Instead of WT KdcA, the KdcAM8 mutant was integrated into Escherichia coli (E. coli) BL21 strain, resulting in the production of 3-HP at a concentration of 0.11 mM. To further improve 3-HP production, two dehydrogenases were compared for the downstream conversion of malonic semialdehyde into 3-HP, and two carboxylases were explored to enhance the upstream precursor supply of oxaloacetate. Additionally, the growth conditions were optimized. Finally, a nonnatural oxaloacetate pathway was successfully engineered in the E. coli BL21 strain, achieving a 3-HP titer of approximately 0.71 mM from glucose. This work illustrates that protein engineering is a powerful tool for modulating flux in the target pathway and holds promise for the future development of the oxaloacetate pathway to improve the 3-HP yield.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.