Lei Tang, Zhengxin Cao, Xin Zhou, Junzhe Zhang, Junchi Ma
{"title":"STF-LPPVA: Local Privacy-Preserving Method for Vehicle Assignment Based on Spatial–Temporal Fusion","authors":"Lei Tang, Zhengxin Cao, Xin Zhou, Junzhe Zhang, Junchi Ma","doi":"10.1049/ise2/1915019","DOIUrl":null,"url":null,"abstract":"<p>There are user privacy risks in cloud-based vehicle dispatch platforms due to the unauthorized collection, use, and dissemination of data. However, existing data protection methods cannot balance privacy, usability, and efficiency well. To address this, we propose a local privacy-preserving vehicle assignment strategy via spatial–temporal fusion (STF-LPPVA). Specifically, the strategy allows the cloud platform to train and distribute a spatial–temporal representation model to the user side. Encoded by this model, drivers and passengers can privately fuze the spatial–temporal information of their trips and then transmit these fuzed vectors to the cloud platform. Based on the similarity of the vectors, the cloud platform can allocate vehicles using the Kuhn–Monkreth (KM) algorithm. In addition, we analyze the theoretical feasibility of the STF-LPPVA strategy using entropy change and get good performance with a dataset from DiDi in Chengdu, China. The results show that the successful matching rate of the STF-LPPVA strategy is very close to the original data matching with lower time overhead. Our approach can reduce the traveling distance by 66.5% and improve the matching success rate by 36.2% on average.</p>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2025 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ise2/1915019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/ise2/1915019","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
There are user privacy risks in cloud-based vehicle dispatch platforms due to the unauthorized collection, use, and dissemination of data. However, existing data protection methods cannot balance privacy, usability, and efficiency well. To address this, we propose a local privacy-preserving vehicle assignment strategy via spatial–temporal fusion (STF-LPPVA). Specifically, the strategy allows the cloud platform to train and distribute a spatial–temporal representation model to the user side. Encoded by this model, drivers and passengers can privately fuze the spatial–temporal information of their trips and then transmit these fuzed vectors to the cloud platform. Based on the similarity of the vectors, the cloud platform can allocate vehicles using the Kuhn–Monkreth (KM) algorithm. In addition, we analyze the theoretical feasibility of the STF-LPPVA strategy using entropy change and get good performance with a dataset from DiDi in Chengdu, China. The results show that the successful matching rate of the STF-LPPVA strategy is very close to the original data matching with lower time overhead. Our approach can reduce the traveling distance by 66.5% and improve the matching success rate by 36.2% on average.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf