Neural Network Modeling Based on Multimodal IIoT Sensing Data: Psychological Stress Assessment and Industrial Human-Machine Collaboration Early Warning System for University Students

IF 0.5 Q4 TELECOMMUNICATIONS
Chen Shao Hong, Zhong Chun
{"title":"Neural Network Modeling Based on Multimodal IIoT Sensing Data: Psychological Stress Assessment and Industrial Human-Machine Collaboration Early Warning System for University Students","authors":"Chen Shao Hong,&nbsp;Zhong Chun","doi":"10.1002/itl2.70093","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With the rapid development of industrial Internet of Things (IIoT), its educational applications extend from equipment monitoring to mental health management. Addressing the limitations of traditional methods (e.g., subjective self-assessment scales) in real-time psychological stress evaluation, this paper proposes a neural network integrating multimodal IIoT data—physiological signals (EEG, HRV), behavioral data (expression, gesture), and interaction logs (text, clickstream)—to build a dynamic fusion and lightweight warning system. The model employs a cross-modal attention mechanism to adaptively allocate data weights (e.g., prioritizing EEG signals by 58% in exam scenarios) and a tensor fusion network (TFN) for feature extraction. An edge-cloud collaborative framework based on federated learning enhances generalization while ensuring privacy through AES-256 encryption, local feature preprocessing, and differential privacy protections during model updates. Experiments on a campus dataset show 89.2% stress classification accuracy (10.7% higher than unimodal approaches), sub-105 ms alert latency, and a 4.7% false alarm rate. Personalized interventions (e.g., counseling) improved stress alleviation by 61.7% for moderate-to-severe cases. This study advances IIoT's role in intelligent mental health management and adaptive human-computer interaction systems.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 5","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of industrial Internet of Things (IIoT), its educational applications extend from equipment monitoring to mental health management. Addressing the limitations of traditional methods (e.g., subjective self-assessment scales) in real-time psychological stress evaluation, this paper proposes a neural network integrating multimodal IIoT data—physiological signals (EEG, HRV), behavioral data (expression, gesture), and interaction logs (text, clickstream)—to build a dynamic fusion and lightweight warning system. The model employs a cross-modal attention mechanism to adaptively allocate data weights (e.g., prioritizing EEG signals by 58% in exam scenarios) and a tensor fusion network (TFN) for feature extraction. An edge-cloud collaborative framework based on federated learning enhances generalization while ensuring privacy through AES-256 encryption, local feature preprocessing, and differential privacy protections during model updates. Experiments on a campus dataset show 89.2% stress classification accuracy (10.7% higher than unimodal approaches), sub-105 ms alert latency, and a 4.7% false alarm rate. Personalized interventions (e.g., counseling) improved stress alleviation by 61.7% for moderate-to-severe cases. This study advances IIoT's role in intelligent mental health management and adaptive human-computer interaction systems.

基于多模态IIoT传感数据的神经网络建模:大学生心理压力评估与工业人机协作预警系统
随着工业物联网(IIoT)的快速发展,其教育应用从设备监测延伸到心理健康管理。针对传统方法(如主观自我评估量表)在实时心理压力评估中的局限性,本文提出了一种集成多模态工业物联网数据(生理信号(EEG、HRV)、行为数据(表情、手势)和交互日志(文本、点击流)的神经网络,构建动态融合、轻量化预警系统。该模型采用跨模态注意机制自适应分配数据权重(例如,在考试场景中,脑电图信号优先级为58%),并使用张量融合网络(TFN)进行特征提取。基于联邦学习的边缘云协作框架增强了泛化,同时通过AES-256加密、本地特征预处理和模型更新期间的差分隐私保护来确保隐私。在校园数据集上进行的实验表明,该方法的压力分类准确率为89.2%(比单峰方法高10.7%),警报延迟低于105 ms,误报率为4.7%。个性化干预措施(例如,咨询)使中重度病例的压力缓解率提高了61.7%。本研究推进了工业物联网在智能心理健康管理和自适应人机交互系统中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信