K. A. Emelyanenko, A. M. Emelyanenko, L. B. Boinovich
{"title":"Supercooling of Evaporating Water Droplets on Superhydrophobic Surfaces at Low Temperatures","authors":"K. A. Emelyanenko, A. M. Emelyanenko, L. B. Boinovich","doi":"10.1134/S1061933X25600642","DOIUrl":null,"url":null,"abstract":"<p>A theoretical analysis of the temperature change of an evaporating droplet on a superhydrophobic surface is performed taking into account heat fluxes of various types. The results show that the additional cooling effect of evaporation can lead to significant cooling and even crystallization of sessile droplets at positive temperatures. However, with a decrease in the ambient temperature, the efficiency of this additional cooling decreases. A method for continuous monitoring of the temperature of an evaporating droplet based on the measured thermodynamic parameters of sessile droplets is proposed. Experimental studies conducted at temperatures slightly above and below zero degrees Celsius demonstrated a satisfactory correlation between the results of the theoretical analysis and the experimentally measured supercooling of water droplets.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":"87 4","pages":"481 - 491"},"PeriodicalIF":1.1000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X25600642","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A theoretical analysis of the temperature change of an evaporating droplet on a superhydrophobic surface is performed taking into account heat fluxes of various types. The results show that the additional cooling effect of evaporation can lead to significant cooling and even crystallization of sessile droplets at positive temperatures. However, with a decrease in the ambient temperature, the efficiency of this additional cooling decreases. A method for continuous monitoring of the temperature of an evaporating droplet based on the measured thermodynamic parameters of sessile droplets is proposed. Experimental studies conducted at temperatures slightly above and below zero degrees Celsius demonstrated a satisfactory correlation between the results of the theoretical analysis and the experimentally measured supercooling of water droplets.
期刊介绍:
Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.