Efficient JPEG-AI Image Coding for Remote Sensing Semantic Segmentation

IF 4.4
Junxi Zhang;Xiang Pan;Zhenzhong Chen;Shan Liu
{"title":"Efficient JPEG-AI Image Coding for Remote Sensing Semantic Segmentation","authors":"Junxi Zhang;Xiang Pan;Zhenzhong Chen;Shan Liu","doi":"10.1109/LGRS.2025.3596235","DOIUrl":null,"url":null,"abstract":"Efficient image compression is crucial for remote sensing (RS) satellite systems, as it determines the performance of machine vision applications analyzing the downlinked image data at ground stations. However, existing conventional or learning-based image compression approaches exhibit limitations in either high complexity or undesirable vision task performance. This letter investigates an efficient neural image compression standard, JPEG-AI-based self-supervised RS image compression approach, and SS-JPEG-AI, for semantic segmentation tasks. Our approach maintains the low-complexity advantages of JPEG-AI while incorporating: 1) a computationally efficient transformer-based attention mechanism that enhances reconstruction quality without increasing encoder complexity for onboard systems and 2) a contrastive learning strategy that improves feature discriminability and sharpens intercategory decision boundaries for segmentation tasks. Compared to the state-of-the-art image compression methods, SS-JPEG-AI achieves better Bjøntegaard delta-rate (BD-rate) performance across the mean intersection over union (mIoU) and mean F-score (mFscore) while maintaining up to <inline-formula> <tex-math>$30\\times $ </tex-math></inline-formula> smaller computational complexity.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11115155/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient image compression is crucial for remote sensing (RS) satellite systems, as it determines the performance of machine vision applications analyzing the downlinked image data at ground stations. However, existing conventional or learning-based image compression approaches exhibit limitations in either high complexity or undesirable vision task performance. This letter investigates an efficient neural image compression standard, JPEG-AI-based self-supervised RS image compression approach, and SS-JPEG-AI, for semantic segmentation tasks. Our approach maintains the low-complexity advantages of JPEG-AI while incorporating: 1) a computationally efficient transformer-based attention mechanism that enhances reconstruction quality without increasing encoder complexity for onboard systems and 2) a contrastive learning strategy that improves feature discriminability and sharpens intercategory decision boundaries for segmentation tasks. Compared to the state-of-the-art image compression methods, SS-JPEG-AI achieves better Bjøntegaard delta-rate (BD-rate) performance across the mean intersection over union (mIoU) and mean F-score (mFscore) while maintaining up to $30\times $ smaller computational complexity.
用于遥感语义分割的高效JPEG-AI图像编码
有效的图像压缩对于遥感(RS)卫星系统至关重要,因为它决定了分析地面站下行图像数据的机器视觉应用程序的性能。然而,现有的传统或基于学习的图像压缩方法在高复杂性或不理想的视觉任务性能方面存在局限性。本文研究了一种高效的神经图像压缩标准,基于jpeg - ai的自监督RS图像压缩方法,以及用于语义分割任务的SS-JPEG-AI。我们的方法保持了JPEG-AI的低复杂度优势,同时结合了:1)一个计算效率高的基于变压器的注意力机制,在不增加机载系统编码器复杂性的情况下提高了重建质量;2)一个对比学习策略,提高了特征可辨别性,并锐化了分割任务的类别间决策边界。与最先进的图像压缩方法相比,SS-JPEG-AI在平均交联(mIoU)和平均F-score (mFscore)上实现了更好的Bjøntegaard delta-rate (BD-rate)性能,同时保持了高达30倍的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信