SiamSCT: Spatial-Channel Saliency and Temporal Fusion Network for Real-Time Aerial Tracking

IF 4.4
Bo Wang;Chenglong Liu;Qiqi Chen;Jinghong Liu
{"title":"SiamSCT: Spatial-Channel Saliency and Temporal Fusion Network for Real-Time Aerial Tracking","authors":"Bo Wang;Chenglong Liu;Qiqi Chen;Jinghong Liu","doi":"10.1109/LGRS.2025.3596119","DOIUrl":null,"url":null,"abstract":"Visual tracking on uncrewed aerial vehicle (UAV) platforms is a fundamental and crucial visual task. Compared to conventional tracking tasks, aerial tracking faces specific challenging scenarios due to its unique perspective. Although existing aerial trackers have demonstrated promising performance, they remain limited in capturing spatial-channel saliency across branches and effectively utilizing historical information. To address these issues, this letter proposes a spatial-channel saliency and temporal fusion network (SiamSCT), which aims to enhance feature representation for efficient and accurate aerial tracking. Specifically, SiamSCT introduces a weight-shared spatial saliency block (SSB) to strengthen the spatial feature representation across the tracking network’s branches. In addition, a light channel aware module (CAM) is designed to facilitate deep feature interaction across branches at the channel level, further enhancing feature discriminability. Finally, using a historical similarity response fusion strategy, SiamSCT achieves more stable and reliable tracking responses, effectively tackling complex aerial scenarios. Extensive experiments on several authoritative aerial tracking datasets demonstrate that SiamSCT outperforms state-of-the-art (SOTA) trackers. Furthermore, SiamSCT achieves a tracking speed of 133 frames/s on NVIDIA RTX 3060Ti, proving its excellent performance in real time.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11113247/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visual tracking on uncrewed aerial vehicle (UAV) platforms is a fundamental and crucial visual task. Compared to conventional tracking tasks, aerial tracking faces specific challenging scenarios due to its unique perspective. Although existing aerial trackers have demonstrated promising performance, they remain limited in capturing spatial-channel saliency across branches and effectively utilizing historical information. To address these issues, this letter proposes a spatial-channel saliency and temporal fusion network (SiamSCT), which aims to enhance feature representation for efficient and accurate aerial tracking. Specifically, SiamSCT introduces a weight-shared spatial saliency block (SSB) to strengthen the spatial feature representation across the tracking network’s branches. In addition, a light channel aware module (CAM) is designed to facilitate deep feature interaction across branches at the channel level, further enhancing feature discriminability. Finally, using a historical similarity response fusion strategy, SiamSCT achieves more stable and reliable tracking responses, effectively tackling complex aerial scenarios. Extensive experiments on several authoritative aerial tracking datasets demonstrate that SiamSCT outperforms state-of-the-art (SOTA) trackers. Furthermore, SiamSCT achieves a tracking speed of 133 frames/s on NVIDIA RTX 3060Ti, proving its excellent performance in real time.
SiamSCT:用于实时空中跟踪的空间通道显著性和时间融合网络
无人机平台的视觉跟踪是一项基础性和关键性的视觉任务。与传统的跟踪任务相比,空中跟踪由于其独特的视角而面临着特定的挑战。尽管现有的空中跟踪器表现出了良好的性能,但它们在捕获跨分支的空间信道显著性和有效利用历史信息方面仍然有限。为了解决这些问题,这封信提出了一个空间信道显著性和时间融合网络(SiamSCT),旨在增强特征表示,以实现高效和准确的空中跟踪。具体来说,SiamSCT引入了一个权重共享的空间显著性块(SSB)来加强跟踪网络分支间的空间特征表示。此外,设计了光通道感知模块(CAM),以促进通道级分支之间的深度特征交互,进一步增强特征的可分辨性。最后,采用历史相似响应融合策略,SiamSCT实现更稳定可靠的跟踪响应,有效应对复杂的空中场景。在几个权威的空中跟踪数据集上进行的广泛实验表明,SiamSCT优于最先进的(SOTA)跟踪器。此外,SiamSCT在NVIDIA RTX 3060Ti上实现了133帧/秒的跟踪速度,证明了其出色的实时性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信