WhatsApp tiplines and multilingual claims in the 2021 Indian assembly elections

IF 2.9 Q1 Social Sciences
Gautam Kishore Shahi , Scott A. Hale
{"title":"WhatsApp tiplines and multilingual claims in the 2021 Indian assembly elections","authors":"Gautam Kishore Shahi ,&nbsp;Scott A. Hale","doi":"10.1016/j.osnem.2025.100323","DOIUrl":null,"url":null,"abstract":"<div><div>WhatsApp tiplines, first launched in 2019 to combat misinformation, enable users to interact with fact-checkers to verify misleading content. This study analyzes 580 unique claims (tips) from 451 users, covering both high-resource languages (English, Hindi) and a low-resource language (Telugu) during the 2021 Indian assembly elections using a mixed-method approach. We categorize the claims into three categories, election, COVID-19, and others, and observe variations across languages. We compare content similarity through frequent word analysis and clustering of neural sentence embeddings. We also investigate user overlap across languages and fact-checking organizations. We measure the average time required to debunk claims and inform tipline users. Results reveal similarities in claims across languages, with some users submitting tips in multiple languages to the same fact-checkers. Fact-checkers generally require a couple of days to debunk a new claim and share the results with users. Notably, no user submits claims to multiple fact-checking organizations, indicating that each organization maintains a unique audience. We provide practical recommendations for using tiplines during elections with ethical consideration of user information.</div></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":"49 ","pages":"Article 100323"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696425000242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

WhatsApp tiplines, first launched in 2019 to combat misinformation, enable users to interact with fact-checkers to verify misleading content. This study analyzes 580 unique claims (tips) from 451 users, covering both high-resource languages (English, Hindi) and a low-resource language (Telugu) during the 2021 Indian assembly elections using a mixed-method approach. We categorize the claims into three categories, election, COVID-19, and others, and observe variations across languages. We compare content similarity through frequent word analysis and clustering of neural sentence embeddings. We also investigate user overlap across languages and fact-checking organizations. We measure the average time required to debunk claims and inform tipline users. Results reveal similarities in claims across languages, with some users submitting tips in multiple languages to the same fact-checkers. Fact-checkers generally require a couple of days to debunk a new claim and share the results with users. Notably, no user submits claims to multiple fact-checking organizations, indicating that each organization maintains a unique audience. We provide practical recommendations for using tiplines during elections with ethical consideration of user information.
2021年印度议会选举中,WhatsApp的话题和多语种言论
于2019年首次推出的WhatsApp tiplines旨在打击错误信息,使用户能够与事实核查员互动,以核实误导性内容。本研究使用混合方法分析了来自451名用户的580个独特主张(提示),涵盖了2021年印度议会选举期间的高资源语言(英语,印地语)和低资源语言(泰卢固语)。我们将这些说法分为三类:选举、COVID-19和其他,并观察了不同语言之间的差异。我们通过频繁词分析和神经句子嵌入聚类来比较内容相似度。我们还调查了不同语言和事实核查组织的用户重叠情况。我们测量揭穿索赔并通知热线用户所需的平均时间。结果显示,不同语言的用户的说法有相似之处,一些用户用多种语言向相同的事实核查员提交提示。事实核查员通常需要几天的时间来揭穿一个新的说法,并与用户分享结果。值得注意的是,没有用户向多个事实检查组织提交声明,这表明每个组织都有一个独特的受众。我们提供实用的建议,在选举期间使用纪律,并考虑用户信息的道德。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信