Multiplicity results for non-local operators of elliptic type

IF 1.3 Q2 MATHEMATICS, APPLIED
Emer Lopera , Leandro Recôva , Adolfo Rumbos
{"title":"Multiplicity results for non-local operators of elliptic type","authors":"Emer Lopera ,&nbsp;Leandro Recôva ,&nbsp;Adolfo Rumbos","doi":"10.1016/j.rinam.2025.100626","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study a class of problems proposed by Servadei and Valdinoci (2013); namely, <span><span><span>(1)</span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>K</mi></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>λ</mi><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mtd><mtd><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mtext>for</mtext><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>;</mo></mtd></mtr><mtr><mtd><mi>u</mi></mtd><mtd><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in</mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> is an open bounded set with Lipschitz boundary, <span><math><mrow><mi>λ</mi><mo>∈</mo><mi>R</mi></mrow></math></span>, <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>¯</mo></mover><mo>×</mo><mi>R</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span> for <span><math><mrow><mi>x</mi><mo>∈</mo><mi>Ω</mi></mrow></math></span>, and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> is a non-local integrodifferential operator with homogeneous Dirichlet boundary condition. By computing the critical groups of the associated energy functional for problem <span><span>(1)</span></span> at the origin and at infinity, respectively, we prove that problem <span><span>(1)</span></span> has three nontrivial solutions for the case <span><math><mrow><mi>λ</mi><mo>&lt;</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and two nontrivial solutions for the case <span><math><mrow><mi>λ</mi><mo>⩾</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo></mrow></math></span> where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is the first eigenvalue of the operator <span><math><mrow><mo>−</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>K</mi></mrow></msub></mrow></math></span>. Finally, assuming that the nonlinearity <span><math><mi>f</mi></math></span> is odd in the second variable, we prove the existence of an unbounded sequence of weak solutions of problem <span><span>(1)</span></span> for the case <span><math><mrow><mi>λ</mi><mo>⩾</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>. We use variational methods and infinite-dimensional Morse theory to obtain the results.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100626"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a class of problems proposed by Servadei and Valdinoci (2013); namely, (1)LKu(x)λu(x)=f(x,u),forxΩ;u=0inRNΩ,where ΩRN is an open bounded set with Lipschitz boundary, λR, fC1(Ω¯×R,R), with f(x,0)=0 for xΩ, and LK is a non-local integrodifferential operator with homogeneous Dirichlet boundary condition. By computing the critical groups of the associated energy functional for problem (1) at the origin and at infinity, respectively, we prove that problem (1) has three nontrivial solutions for the case λ<λ1 and two nontrivial solutions for the case λλ1, where λ1 is the first eigenvalue of the operator LK. Finally, assuming that the nonlinearity f is odd in the second variable, we prove the existence of an unbounded sequence of weak solutions of problem (1) for the case λλ1. We use variational methods and infinite-dimensional Morse theory to obtain the results.
椭圆型非局部算子的多重性结果
本文研究Servadei和Valdinoci(2013)提出的一类问题;即(1)−LKu(x)−λu(x)=f(x,u),forx∈Ω;u=0inRN∈Ω,其中Ω∧RN是一个具有Lipschitz边界的开有界集合,λ∈R, f∈C1(Ω¯×R,R),其中对于x∈Ω, f(x,0)=0, LK是一个具有齐次Dirichlet边界条件的非局部积分微分算子。通过分别在原点和无穷远处计算问题(1)的相关能量函数的临界群,我们证明问题(1)对于λ<;λ1的情况有三个非平凡解,对于λ大于或等于λ1的情况有两个非平凡解,其中λ1是算子−LK的第一个特征值。最后,假设非线性f在第二个变量中是奇数,我们证明对于λ大于或等于λ1的情况,问题(1)的弱解的无界序列的存在性。我们使用变分方法和无限维莫尔斯理论来得到结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信