{"title":"Multiplicity results for non-local operators of elliptic type","authors":"Emer Lopera , Leandro Recôva , Adolfo Rumbos","doi":"10.1016/j.rinam.2025.100626","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study a class of problems proposed by Servadei and Valdinoci (2013); namely, <span><span><span>(1)</span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>K</mi></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>λ</mi><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mtd><mtd><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>,</mo><mtext>for</mtext><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>;</mo></mtd></mtr><mtr><mtd><mi>u</mi></mtd><mtd><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in</mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> is an open bounded set with Lipschitz boundary, <span><math><mrow><mi>λ</mi><mo>∈</mo><mi>R</mi></mrow></math></span>, <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>¯</mo></mover><mo>×</mo><mi>R</mi><mo>,</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span> for <span><math><mrow><mi>x</mi><mo>∈</mo><mi>Ω</mi></mrow></math></span>, and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>K</mi></mrow></msub></math></span> is a non-local integrodifferential operator with homogeneous Dirichlet boundary condition. By computing the critical groups of the associated energy functional for problem <span><span>(1)</span></span> at the origin and at infinity, respectively, we prove that problem <span><span>(1)</span></span> has three nontrivial solutions for the case <span><math><mrow><mi>λ</mi><mo><</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> and two nontrivial solutions for the case <span><math><mrow><mi>λ</mi><mo>⩾</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo></mrow></math></span> where <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is the first eigenvalue of the operator <span><math><mrow><mo>−</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>K</mi></mrow></msub></mrow></math></span>. Finally, assuming that the nonlinearity <span><math><mi>f</mi></math></span> is odd in the second variable, we prove the existence of an unbounded sequence of weak solutions of problem <span><span>(1)</span></span> for the case <span><math><mrow><mi>λ</mi><mo>⩾</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>. We use variational methods and infinite-dimensional Morse theory to obtain the results.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100626"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study a class of problems proposed by Servadei and Valdinoci (2013); namely, (1)where is an open bounded set with Lipschitz boundary, , , with for , and is a non-local integrodifferential operator with homogeneous Dirichlet boundary condition. By computing the critical groups of the associated energy functional for problem (1) at the origin and at infinity, respectively, we prove that problem (1) has three nontrivial solutions for the case and two nontrivial solutions for the case where is the first eigenvalue of the operator . Finally, assuming that the nonlinearity is odd in the second variable, we prove the existence of an unbounded sequence of weak solutions of problem (1) for the case . We use variational methods and infinite-dimensional Morse theory to obtain the results.