{"title":"Making hierarchically aware decisions on short findings for automatic summarisation","authors":"Emrah Inan","doi":"10.1016/j.jocs.2025.102692","DOIUrl":null,"url":null,"abstract":"<div><div>An impression in a typical radiology report emphasises critical information by providing a conclusion and reasoning based on the findings. However, the findings and impression sections of these reports generally contain brief texts, as they highlight crucial observations derived from the clinical radiograph. In this scenario, abstractive summarisation models often experience a degradation in performance when generating short impressions. To address this challenge in the summarisation task, our work proposes a method that combines well-known fine-tuned text classification and abstractive summarisation language models. Since fine-tuning a language model requires an extensive, well-defined training dataset and is a time-consuming task dependent on high GPU resources, we employ prompt engineering, which uses prompt templates to programme language models and improve their performance. Our method first predicts whether the given findings text is normal or abnormal by leveraging a fine-tuned language model. Then, we apply a radiology-specific BART model to generate the summary for abnormal findings. In the zero-shot setting, our method achieves remarkable results compared to existing approaches on a real-world dataset. In particular, our method achieves scores of 37.43 for ROUGE-1, 21.72 for ROUGE-2, and 35.52 for ROUGE-L.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"91 ","pages":"Article 102692"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325001693","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
An impression in a typical radiology report emphasises critical information by providing a conclusion and reasoning based on the findings. However, the findings and impression sections of these reports generally contain brief texts, as they highlight crucial observations derived from the clinical radiograph. In this scenario, abstractive summarisation models often experience a degradation in performance when generating short impressions. To address this challenge in the summarisation task, our work proposes a method that combines well-known fine-tuned text classification and abstractive summarisation language models. Since fine-tuning a language model requires an extensive, well-defined training dataset and is a time-consuming task dependent on high GPU resources, we employ prompt engineering, which uses prompt templates to programme language models and improve their performance. Our method first predicts whether the given findings text is normal or abnormal by leveraging a fine-tuned language model. Then, we apply a radiology-specific BART model to generate the summary for abnormal findings. In the zero-shot setting, our method achieves remarkable results compared to existing approaches on a real-world dataset. In particular, our method achieves scores of 37.43 for ROUGE-1, 21.72 for ROUGE-2, and 35.52 for ROUGE-L.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).