Making hierarchically aware decisions on short findings for automatic summarisation

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Emrah Inan
{"title":"Making hierarchically aware decisions on short findings for automatic summarisation","authors":"Emrah Inan","doi":"10.1016/j.jocs.2025.102692","DOIUrl":null,"url":null,"abstract":"<div><div>An impression in a typical radiology report emphasises critical information by providing a conclusion and reasoning based on the findings. However, the findings and impression sections of these reports generally contain brief texts, as they highlight crucial observations derived from the clinical radiograph. In this scenario, abstractive summarisation models often experience a degradation in performance when generating short impressions. To address this challenge in the summarisation task, our work proposes a method that combines well-known fine-tuned text classification and abstractive summarisation language models. Since fine-tuning a language model requires an extensive, well-defined training dataset and is a time-consuming task dependent on high GPU resources, we employ prompt engineering, which uses prompt templates to programme language models and improve their performance. Our method first predicts whether the given findings text is normal or abnormal by leveraging a fine-tuned language model. Then, we apply a radiology-specific BART model to generate the summary for abnormal findings. In the zero-shot setting, our method achieves remarkable results compared to existing approaches on a real-world dataset. In particular, our method achieves scores of 37.43 for ROUGE-1, 21.72 for ROUGE-2, and 35.52 for ROUGE-L.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"91 ","pages":"Article 102692"},"PeriodicalIF":3.7000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325001693","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

An impression in a typical radiology report emphasises critical information by providing a conclusion and reasoning based on the findings. However, the findings and impression sections of these reports generally contain brief texts, as they highlight crucial observations derived from the clinical radiograph. In this scenario, abstractive summarisation models often experience a degradation in performance when generating short impressions. To address this challenge in the summarisation task, our work proposes a method that combines well-known fine-tuned text classification and abstractive summarisation language models. Since fine-tuning a language model requires an extensive, well-defined training dataset and is a time-consuming task dependent on high GPU resources, we employ prompt engineering, which uses prompt templates to programme language models and improve their performance. Our method first predicts whether the given findings text is normal or abnormal by leveraging a fine-tuned language model. Then, we apply a radiology-specific BART model to generate the summary for abnormal findings. In the zero-shot setting, our method achieves remarkable results compared to existing approaches on a real-world dataset. In particular, our method achieves scores of 37.43 for ROUGE-1, 21.72 for ROUGE-2, and 35.52 for ROUGE-L.
为自动总结的简短发现做出层次分明的决策
在典型的放射学报告中,印象通过提供结论和基于发现的推理来强调关键信息。然而,这些报告的发现和印象部分通常包含简短的文本,因为它们强调了来自临床x线片的关键观察结果。在这种情况下,抽象摘要模型在生成简短印象时通常会出现性能下降。为了解决摘要任务中的这一挑战,我们的工作提出了一种将众所周知的微调文本分类和抽象摘要语言模型相结合的方法。由于微调语言模型需要广泛的,定义良好的训练数据集,并且依赖于高GPU资源是一项耗时的任务,因此我们采用提示工程,它使用提示模板来编程语言模型并提高其性能。我们的方法首先通过利用一个微调的语言模型来预测给定的结果文本是正常的还是异常的。然后,我们应用放射学特异性BART模型来生成异常发现的摘要。在零射击设置中,与现有方法在真实数据集上相比,我们的方法取得了显着的结果。其中,ROUGE-1的得分为37.43分,ROUGE-2的得分为21.72分,ROUGE-L的得分为35.52分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Science
Journal of Computational Science COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
5.50
自引率
3.00%
发文量
227
审稿时长
41 days
期刊介绍: Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory. The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation. This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods. Computational science typically unifies three distinct elements: • Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous); • Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems; • Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信