GMANet: Gate mamba attention for fetal head and pubic symphysis segmentation in ultrasound images analysis

IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mengqing Mei , Yibo Li , Xuannan An , Zhiwei Ye , Liye Mei
{"title":"GMANet: Gate mamba attention for fetal head and pubic symphysis segmentation in ultrasound images analysis","authors":"Mengqing Mei ,&nbsp;Yibo Li ,&nbsp;Xuannan An ,&nbsp;Zhiwei Ye ,&nbsp;Liye Mei","doi":"10.1016/j.dsp.2025.105533","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate segmentation of fetal heads and the pubic symphysis (PSFH) in ultrasound images during childbirth is crucial for precise angle of progression (AoP) measurements, which enables clinicians to manage dystocia complications effectively. Conventional approaches relying on sonographer-dependent manual selection prove time-consuming and operator-sensitive, while concurrently coping with inherent ultrasound noise, anatomical occlusions, and substantial target shape or location variations. To overcome these challenges in small-target segmentation and boundary delineation, we present GMANet, a novel Mamba-based architecture. Our core design introduces the Gate Mamba Attention (GMA) that synergistically integrates selective state-space modeling with a gating mechanism, where sequence-aware attention of Mamba dynamically focuses on crucial spatial dependencies. At the same time, the fixed-parameter architecture maintains stable local feature extraction. Then we develop an Adaptive Pyramid Pooling Module (APPM) that enhances multiscale discriminability through parallel multi-depth pooling, effectively handling significant size disparities in medical targets. Subsequent feature refinement employs our Efficient Multiscale Attention (EMA) to aggregate multi-receptive-field context through parameter-efficient spatial-channel interactions adaptively. Finally, the proposed GMANet demonstrates statistically significant advantages when benchmarked against contemporary state-of-the-art (SOTA) segmentation methodologies on the PSFH dataset, achieving a composite score of 0.9326, F1-score of 76.04, and ΔAoP of 7.70°. This advancement holds significant promise for automating fetal imaging analysis, potentially improving clinical consistency while reducing operator dependence. Our code is available at <span><span>https://github.com/AgamLi/GMANet-Gate-Mamba-Attention</span><svg><path></path></svg></span></div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"168 ","pages":"Article 105533"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S105120042500555X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate segmentation of fetal heads and the pubic symphysis (PSFH) in ultrasound images during childbirth is crucial for precise angle of progression (AoP) measurements, which enables clinicians to manage dystocia complications effectively. Conventional approaches relying on sonographer-dependent manual selection prove time-consuming and operator-sensitive, while concurrently coping with inherent ultrasound noise, anatomical occlusions, and substantial target shape or location variations. To overcome these challenges in small-target segmentation and boundary delineation, we present GMANet, a novel Mamba-based architecture. Our core design introduces the Gate Mamba Attention (GMA) that synergistically integrates selective state-space modeling with a gating mechanism, where sequence-aware attention of Mamba dynamically focuses on crucial spatial dependencies. At the same time, the fixed-parameter architecture maintains stable local feature extraction. Then we develop an Adaptive Pyramid Pooling Module (APPM) that enhances multiscale discriminability through parallel multi-depth pooling, effectively handling significant size disparities in medical targets. Subsequent feature refinement employs our Efficient Multiscale Attention (EMA) to aggregate multi-receptive-field context through parameter-efficient spatial-channel interactions adaptively. Finally, the proposed GMANet demonstrates statistically significant advantages when benchmarked against contemporary state-of-the-art (SOTA) segmentation methodologies on the PSFH dataset, achieving a composite score of 0.9326, F1-score of 76.04, and ΔAoP of 7.70°. This advancement holds significant promise for automating fetal imaging analysis, potentially improving clinical consistency while reducing operator dependence. Our code is available at https://github.com/AgamLi/GMANet-Gate-Mamba-Attention
门曼巴注意胎儿头和耻骨联合的超声图像分割分析
在分娩过程中,超声图像中胎儿头部和耻骨联合(PSFH)的准确分割对于精确的进展角(AoP)测量至关重要,这使临床医生能够有效地处理难产并发症。传统的方法依赖于超声仪的手动选择,证明费时且操作者敏感,同时还要应对固有的超声噪声、解剖闭塞以及大量的目标形状或位置变化。为了克服这些挑战,在小目标分割和边界划定,我们提出了GMANet,一个新的基于mamba架构。我们的核心设计引入了门曼巴注意力(GMA),它协同集成了选择性状态空间建模和门控机制,其中曼巴的序列感知注意力动态地集中在关键的空间依赖性上。同时,固定参数架构保持了稳定的局部特征提取。然后,我们开发了一个自适应金字塔池模块(APPM),该模块通过并行多深度池化增强了多尺度可判别性,有效地处理了医疗目标的显著尺寸差异。随后的特征细化采用我们的高效多尺度注意(EMA),通过参数高效的空间通道交互自适应地聚合多接受场上下文。最后,当与PSFH数据集上的当代最先进(SOTA)分割方法进行基准测试时,所提出的GMANet显示出统计学上显著的优势,其综合得分为0.9326,f1得分为76.04,ΔAoP得分为7.70°。这一进步为自动化胎儿成像分析带来了巨大的希望,有可能提高临床一致性,同时减少对操作人员的依赖。我们的代码可在https://github.com/AgamLi/GMANet-Gate-Mamba-Attention上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信