Any function I can actually write down is measurable, right?

IF 0.9 4区 数学 Q2 MATHEMATICS
James E. Hanson
{"title":"Any function I can actually write down is measurable, right?","authors":"James E. Hanson","doi":"10.1016/j.exmath.2025.125718","DOIUrl":null,"url":null,"abstract":"<div><div>In this expository paper aimed at a general mathematical audience, we discuss how to combine certain classic theorems of set-theoretic inner model theory and effective descriptive set theory with work on Hilbert’s tenth problem and universal Diophantine equations to produce the following surprising result: There is a specific polynomial <span><math><mrow><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>,</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>70</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> of degree 7 with integer coefficients such that it is independent of <span><math><mi>ZFC</mi></math></span> (and much stronger theories) whether the function <span><span><span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><munder><mrow><mo>inf</mo></mrow><mrow><mi>y</mi><mo>∈</mo><mi>R</mi></mrow></munder><munder><mrow><mo>sup</mo></mrow><mrow><mi>z</mi><mo>∈</mo><mi>R</mi></mrow></munder><munder><mrow><mo>inf</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></munder><munder><mrow><mo>sup</mo></mrow><mrow><mover><mrow><mi>k</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>70</mn></mrow></msup></mrow></munder><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>,</mo><mi>n</mi><mo>,</mo><mover><mrow><mi>k</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span></span></span>is Lebesgue measurable. We also give similarly defined <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> with the property that the statement “<span><math><mrow><mi>x</mi><mo>↦</mo><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> is measurable for every <span><math><mrow><mi>r</mi><mo>∈</mo><mi>R</mi></mrow></math></span>” has large cardinal consistency strength (and in particular implies the consistency of <span><math><mi>ZFC</mi></math></span>) and <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> such that <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow><mo>,</mo><mo>…</mo><mo>,</mo><mi>h</mi><mrow><mo>(</mo><mn>16</mn><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> can consistently be the indicator functions of a Banach–Tarski paradoxical decomposition of the sphere.</div><div>Finally, we discuss some situations in which measurability of analogously defined functions can be concluded by inspection, which touches on model-theoretic o-minimality and the fact that sufficiently strong large cardinal hypotheses (such as Vopěnka’s principle and much weaker assumptions) imply that all ‘reasonably definable’ functions (including the above <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>m</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>) are universally measurable.</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"43 6","pages":"Article 125718"},"PeriodicalIF":0.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086925000738","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this expository paper aimed at a general mathematical audience, we discuss how to combine certain classic theorems of set-theoretic inner model theory and effective descriptive set theory with work on Hilbert’s tenth problem and universal Diophantine equations to produce the following surprising result: There is a specific polynomial p(x,y,z,n,k1,,k70) of degree 7 with integer coefficients such that it is independent of ZFC (and much stronger theories) whether the function f(x)=infyRsupzRinfnNsupk̄N70p(x,y,z,n,k̄)is Lebesgue measurable. We also give similarly defined g(x,y) with the property that the statement “xg(x,r) is measurable for every rR” has large cardinal consistency strength (and in particular implies the consistency of ZFC) and h(m,x,y,z) such that h(1,x,y,z),,h(16,x,y,z) can consistently be the indicator functions of a Banach–Tarski paradoxical decomposition of the sphere.
Finally, we discuss some situations in which measurability of analogously defined functions can be concluded by inspection, which touches on model-theoretic o-minimality and the fact that sufficiently strong large cardinal hypotheses (such as Vopěnka’s principle and much weaker assumptions) imply that all ‘reasonably definable’ functions (including the above f(x), g(x,y), and h(m,x,y,z)) are universally measurable.
任何我能写出的函数都是可测量的,对吧?
在这篇针对一般数学读者的说说性论文中,我们讨论了如何将集合论内模论和有效描述集合论的某些经典定理与希尔伯特第十问题和普遍丢芬图方程的工作结合起来,以产生以下惊人的结果:有一个特定的7次多项式p(x,y,z,n,k1,…,k70)具有整数系数,使得它独立于ZFC(以及更强的理论)函数f(x)=infy∈Rsupz∈Rinfn∈Nsupk∈N70p(x,y,z,n,k)是否为勒贝格可测。我们也给出了类似的定义g(x,y),并给出了“x∑g(x,r)对于每一个r∈r都是可测的”的性质,即命题“x∑g(x,r)对于每一个r∈r都是可测的”具有较大的基一致性强度(特别是暗示了ZFC的一致性)和h(m,x,y,z),使得h(1,x,y,z),…,h(16,x,y,z)可以一致地成为球的Banach-Tarski悖论分解的指示函数。最后,我们讨论了可以通过检验得出类似定义函数的可测性的一些情况,这涉及到模型论的o-极小性和足够强的大基数假设(如vopovonka原理和更弱的假设)意味着所有“合理可定义”的函数(包括上述f(x), g(x,y)和h(m,x,y,z))是普遍可测的事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
41
审稿时长
40 days
期刊介绍: Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信