{"title":"Wetting behavior of polyoxyethylene-type nonionic surfactant with multi-branched chains on solid surfaces.","authors":"Risa Kawai,Nana Tsutsui,Kotoha Ueno,Shiho Yada,Masashi Ohno,Toshinari Koda,Tomokazu Yoshimura","doi":"10.1039/d5cp02321a","DOIUrl":null,"url":null,"abstract":"Wetting of solid surfaces by surfactants is a fundamental phenomenon exploited in various applications, including cleaning, coating, dispersion, and adhesion, and in electronics materials. In this study, the interfacial properties and wettability of a polyoxyethylene (EO)-type nonionic surfactant with multi-branched chains (bC7-bC9EO15.8) were systematically investigated and compared with those of corresponding linear double-(C8-C8EO16.2) and single-chain (C16.8EO15.5) surfactants. Although bC7-bC9EO15.8 exhibited a higher critical micelle concentration (CMC), it significantly reduced the surface tension to 26.3-27.0 mN m-1, exhibiting excellent surface activity due to its methyl-rich branched structure. Additionally, contact angle measurements revealed that bC7-bC9EO15.8 facilitated rapid spreading on hydrophobic surfaces even at low concentrations, with significantly lower contact angles on glass surfaces than those of its linear-type counterparts. This behavior was attributed to initial EO-chain adsorption followed by hydrophobic-chain reorientation, possibly involving micelle adsorption or partial bilayer formation at the solid/liquid interface. Moreover, bC7-bC9EO15.8 consistently exhibited the highest wetting free energy across all substrates, regardless of surface polarity. These findings highlight the key role of branched hydrophobic chains in enhancing wettability.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"17 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp02321a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wetting of solid surfaces by surfactants is a fundamental phenomenon exploited in various applications, including cleaning, coating, dispersion, and adhesion, and in electronics materials. In this study, the interfacial properties and wettability of a polyoxyethylene (EO)-type nonionic surfactant with multi-branched chains (bC7-bC9EO15.8) were systematically investigated and compared with those of corresponding linear double-(C8-C8EO16.2) and single-chain (C16.8EO15.5) surfactants. Although bC7-bC9EO15.8 exhibited a higher critical micelle concentration (CMC), it significantly reduced the surface tension to 26.3-27.0 mN m-1, exhibiting excellent surface activity due to its methyl-rich branched structure. Additionally, contact angle measurements revealed that bC7-bC9EO15.8 facilitated rapid spreading on hydrophobic surfaces even at low concentrations, with significantly lower contact angles on glass surfaces than those of its linear-type counterparts. This behavior was attributed to initial EO-chain adsorption followed by hydrophobic-chain reorientation, possibly involving micelle adsorption or partial bilayer formation at the solid/liquid interface. Moreover, bC7-bC9EO15.8 consistently exhibited the highest wetting free energy across all substrates, regardless of surface polarity. These findings highlight the key role of branched hydrophobic chains in enhancing wettability.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.