{"title":"Hardware Security in the Connected World","authors":"Durba Chatterjee, Shuvodip Maitra, Nimish Mishra, Shubhi Shukla, Debdeep Mukhopadhyay","doi":"10.1002/widm.70034","DOIUrl":null,"url":null,"abstract":"The rapid proliferation of the Internet of Things (IoT) has integrated billions of smart devices into our daily lives, generating and exchanging vast amounts of critical data. While this connectivity offers significant benefits, it also introduces numerous security vulnerabilities. Addressing these vulnerabilities requires a comprehensive approach to hardware security, one that evaluates the interplay of various attacks and countermeasures to protect these systems. This article provides an extensive overview of hardware security strategies and explores contemporary attacks threatening connected systems. We begin by presenting state‐of‐the‐art side‐channel and fault attacks targeting embedded systems, emphasizing the wide range of IoT targets such as smart home devices, medical implants, industrial control systems, and automotive components. Next, we examine hardware‐based security primitives such as physically unclonable functions (PUFs) and physically related functions (PReFs), which have emerged as promising solutions for establishing a hardware root‐of‐trust in lightweight, resource‐constrained devices. These primitives provide robust alternatives to secure storage of cryptographic keys, essential for protecting the diverse array of IoT devices. Further, we discuss trusted architectures, hardware Trojans, and physical assurance mechanisms, highlighting their roles in enhancing security across different IoT environments. We conclude by exploring the expanse of machine learning‐assisted attacks, which present new and intriguing challenges across all the aforementioned security domains. This article aims to offer valuable insights into the current challenges and future directions of research in hardware security, particularly pertaining to the varied and expanding landscape of IoT devices.This article is categorized under: <jats:list list-type=\"simple\"> <jats:list-item>Technologies > Internet of Things</jats:list-item> <jats:list-item>Technologies > Machine Learning</jats:list-item> <jats:list-item>Commercial, Legal, and Ethical Issues > Security and Privacy</jats:list-item> </jats:list>","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"179 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.70034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid proliferation of the Internet of Things (IoT) has integrated billions of smart devices into our daily lives, generating and exchanging vast amounts of critical data. While this connectivity offers significant benefits, it also introduces numerous security vulnerabilities. Addressing these vulnerabilities requires a comprehensive approach to hardware security, one that evaluates the interplay of various attacks and countermeasures to protect these systems. This article provides an extensive overview of hardware security strategies and explores contemporary attacks threatening connected systems. We begin by presenting state‐of‐the‐art side‐channel and fault attacks targeting embedded systems, emphasizing the wide range of IoT targets such as smart home devices, medical implants, industrial control systems, and automotive components. Next, we examine hardware‐based security primitives such as physically unclonable functions (PUFs) and physically related functions (PReFs), which have emerged as promising solutions for establishing a hardware root‐of‐trust in lightweight, resource‐constrained devices. These primitives provide robust alternatives to secure storage of cryptographic keys, essential for protecting the diverse array of IoT devices. Further, we discuss trusted architectures, hardware Trojans, and physical assurance mechanisms, highlighting their roles in enhancing security across different IoT environments. We conclude by exploring the expanse of machine learning‐assisted attacks, which present new and intriguing challenges across all the aforementioned security domains. This article aims to offer valuable insights into the current challenges and future directions of research in hardware security, particularly pertaining to the varied and expanding landscape of IoT devices.This article is categorized under: Technologies > Internet of ThingsTechnologies > Machine LearningCommercial, Legal, and Ethical Issues > Security and Privacy