Automated machine learning profiling with MAP-HR for quantifying homologous recombination foci in patient samples.

IF 3.2 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
NAR cancer Pub Date : 2025-08-11 eCollection Date: 2025-09-01 DOI:10.1093/narcan/zcaf025
Tugba Y Ozmen, Matthew J Rames, Gabriel M Zangirolani, Furkan Ozmen, Kangjin Jeong, Connor Frankston, Gordon B Mills
{"title":"Automated machine learning profiling with MAP-HR for quantifying homologous recombination foci in patient samples.","authors":"Tugba Y Ozmen, Matthew J Rames, Gabriel M Zangirolani, Furkan Ozmen, Kangjin Jeong, Connor Frankston, Gordon B Mills","doi":"10.1093/narcan/zcaf025","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate visualization and quantification of homologous recombination (HR)-associated foci in readily available patient samples are critical for identifying patients with HR deficiency (HRD) when they present for care to guide polyADP ribose polymerase (PARP) inhibitors (PARPi) or platinum-based therapies. Immunofluorescence (IF) assays have the potential to accurately visualize DNA repair processes as punctate foci within the nucleus. To ensure precise HRD assessment, we developed MAP-HR, (<b>M</b>achine-learning <b>A</b>ssisted <b>P</b>rofiling of <b>H</b>omologous <b>R</b>ecombination), a scalable machine-learning (ML) analysis platform to enable effective patient triage and therapeutic decision-making. This workflow integrates high-resolution four-channel IF imaging and automated analysis of Geminin (cell cycle states), RAD51 foci (HR repair), γH2AX foci (double strand breaks) and DAPI (nuclear localization) in both cultured cell lines and in a single formalin-fixed, paraffin-embedded (FFPE) patient samples. Using a spinning disk confocal microscope, we optimized imaging parameters to improve resolution and signal-to-noise ratio. Our MAP-HR pipeline uses nested nuclei and segmentation of foci to analyze the HR status of each cell, unlike competing bulk or single-foci marker assays, allowing evaluation of HR functional heterogeneity across and within patient biopsies. This approach facilitates robust comparisons of HR and foci-based processes across diverse cell populations and patient tissues, enabling scalable, translational research.</p>","PeriodicalId":94149,"journal":{"name":"NAR cancer","volume":"7 3","pages":"zcaf025"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342941/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/narcan/zcaf025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate visualization and quantification of homologous recombination (HR)-associated foci in readily available patient samples are critical for identifying patients with HR deficiency (HRD) when they present for care to guide polyADP ribose polymerase (PARP) inhibitors (PARPi) or platinum-based therapies. Immunofluorescence (IF) assays have the potential to accurately visualize DNA repair processes as punctate foci within the nucleus. To ensure precise HRD assessment, we developed MAP-HR, (Machine-learning Assisted Profiling of Homologous Recombination), a scalable machine-learning (ML) analysis platform to enable effective patient triage and therapeutic decision-making. This workflow integrates high-resolution four-channel IF imaging and automated analysis of Geminin (cell cycle states), RAD51 foci (HR repair), γH2AX foci (double strand breaks) and DAPI (nuclear localization) in both cultured cell lines and in a single formalin-fixed, paraffin-embedded (FFPE) patient samples. Using a spinning disk confocal microscope, we optimized imaging parameters to improve resolution and signal-to-noise ratio. Our MAP-HR pipeline uses nested nuclei and segmentation of foci to analyze the HR status of each cell, unlike competing bulk or single-foci marker assays, allowing evaluation of HR functional heterogeneity across and within patient biopsies. This approach facilitates robust comparisons of HR and foci-based processes across diverse cell populations and patient tissues, enabling scalable, translational research.

自动机器学习分析与MAP-HR定量同源重组病灶的患者样本。
在现成的患者样本中,同源重组(HR)相关病灶的准确可视化和定量对于识别HR缺乏症(HRD)患者至关重要,因为他们需要指导多adp核糖聚合酶(PARP)抑制剂(PARPi)或铂基治疗。免疫荧光(IF)测定有潜力准确地可视化DNA修复过程点状灶在细胞核内。为了确保准确的HRD评估,我们开发了MAP-HR(机器学习辅助分析同源重组),这是一个可扩展的机器学习(ML)分析平台,可实现有效的患者分诊和治疗决策。该工作流程集成了高分辨率四通道IF成像和Geminin(细胞周期状态),RAD51焦点(HR修复),γH2AX焦点(双链断裂)和DAPI(核定位)在培养细胞系和单个福尔马林固定石蜡包埋(FFPE)患者样本中的自动分析。利用旋转盘共聚焦显微镜,优化成像参数,提高分辨率和信噪比。我们的MAP-HR管道使用嵌套核和病灶分割来分析每个细胞的HR状态,不像竞争对手的批量或单病灶标记分析,允许评估患者活检之间和内部的HR功能异质性。这种方法有助于在不同细胞群和患者组织中对HR和基于焦点的过程进行强有力的比较,从而实现可扩展的转化研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信