Video Diffusion Posterior Sampling for Seeing Beyond Dynamic Scattering Layers.

IF 18.6
Taesung Kwon, Gookho Song, Yoosun Kim, Jeongsol Kim, Jong Chul Ye, Mooseok Jang
{"title":"Video Diffusion Posterior Sampling for Seeing Beyond Dynamic Scattering Layers.","authors":"Taesung Kwon, Gookho Song, Yoosun Kim, Jeongsol Kim, Jong Chul Ye, Mooseok Jang","doi":"10.1109/TPAMI.2025.3598457","DOIUrl":null,"url":null,"abstract":"<p><p>Imaging through scattering is challenging, as even a thin layer can randomly perturb light propagation and obscure hidden objects. Accurate closed-form modeling of forward scattering remains difficult, particularly for dynamically varying or thick layers. Here, we introduce a plug-and-play inverse solver based on video diffusion models with a physically grounded forward model tailored to dynamic scattering layers. Our method extends Diffusion Posterior Sampling (DPS) to the spatio-temporal domain, thereby capturing statistical correlations between video frames and scattered signals more effectively. Leveraging these temporal correlations, our approach recovers high-resolution spatial details that spatial-only methods typically fail to reconstruct. We also propose an inference-time optimization with a lightweight mapping network, enabling joint estimation of low-dimensional forward-model parameters without additional training. This joint optimization significantly enhances adaptability to unknown, time-varying degradations, making our method suitable for blind inverse scattering problems. We validate across diverse conditions, including different scene types, layer thicknesses, and scene-layer distances. And real-world experiments using multiple datasets confirm the robustness and effectiveness of our approach, even under real noise and forward-model approximation mismatches. Finally, we validate our method as a general video-restoration framework across dehazing, deblurring, inpainting, and blind restoration under complex optical aberrations. Our implementation is available at: https://github.com/star-kwon/VDPS.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":18.6000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3598457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Imaging through scattering is challenging, as even a thin layer can randomly perturb light propagation and obscure hidden objects. Accurate closed-form modeling of forward scattering remains difficult, particularly for dynamically varying or thick layers. Here, we introduce a plug-and-play inverse solver based on video diffusion models with a physically grounded forward model tailored to dynamic scattering layers. Our method extends Diffusion Posterior Sampling (DPS) to the spatio-temporal domain, thereby capturing statistical correlations between video frames and scattered signals more effectively. Leveraging these temporal correlations, our approach recovers high-resolution spatial details that spatial-only methods typically fail to reconstruct. We also propose an inference-time optimization with a lightweight mapping network, enabling joint estimation of low-dimensional forward-model parameters without additional training. This joint optimization significantly enhances adaptability to unknown, time-varying degradations, making our method suitable for blind inverse scattering problems. We validate across diverse conditions, including different scene types, layer thicknesses, and scene-layer distances. And real-world experiments using multiple datasets confirm the robustness and effectiveness of our approach, even under real noise and forward-model approximation mismatches. Finally, we validate our method as a general video-restoration framework across dehazing, deblurring, inpainting, and blind restoration under complex optical aberrations. Our implementation is available at: https://github.com/star-kwon/VDPS.

视频扩散后验采样超越动态散射层。
通过散射成像是具有挑战性的,因为即使是很薄的一层也会随机干扰光的传播,使隐藏的物体变得模糊。准确的前向散射封闭模型仍然很困难,特别是对于动态变化或厚层。在这里,我们介绍了一种基于视频扩散模型的即插即用反求解器,该模型具有适合动态散射层的物理接地正演模型。我们的方法将扩散后验采样(DPS)扩展到时空域,从而更有效地捕获视频帧和散射信号之间的统计相关性。利用这些时间相关性,我们的方法可以恢复高分辨率的空间细节,这是纯空间方法通常无法重建的。我们还提出了一种使用轻量级映射网络的推理时间优化方法,可以在不需要额外训练的情况下联合估计低维前向模型参数。这种联合优化显著提高了对未知时变退化的适应性,使我们的方法适用于盲逆散射问题。我们在不同的条件下进行验证,包括不同的场景类型、层厚度和场景层距离。使用多个数据集的真实世界实验证实了我们的方法的鲁棒性和有效性,即使在真实噪声和前向模型近似不匹配的情况下也是如此。最后,我们验证了我们的方法作为一个通用的视频恢复框架,跨越去雾、去模糊、补漆和复杂光学像差下的盲恢复。我们的实现可在:https://github.com/star-kwon/VDPS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信