Democratizing advanced surgical guidance: decoupling the state-of-the-art from tertiary centers and breaking trail for autonomous robotic surgery in austere environments.
Eric R Henderson, David H Gracias, Venkat M Ramakrishnan, Stas Tiomkin, Juan P Wachs, Daniel A Wollin
{"title":"Democratizing advanced surgical guidance: decoupling the state-of-the-art from tertiary centers and breaking trail for autonomous robotic surgery in austere environments.","authors":"Eric R Henderson, David H Gracias, Venkat M Ramakrishnan, Stas Tiomkin, Juan P Wachs, Daniel A Wollin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Surgery involves iterative identification of anatomical structures and intervention upon them. In recent years, machine-based tissue recognition has advanced substantially, enhancing the safety and efficacy of medical procedures by reducing uncertainty about structure identity through quantitative evaluation (e.g., tissue density, optical properties, fluorescence contrast). However, while tissue-identifying tools have progressed rapidly, the development of intervention tools has lagged. It is worth considering the eventual convergence of these technologies at their mature stage, culminating in autonomous robotic surgery (ARS). Beyond technical feasibility, deploying such a groundbreaking technology requires careful consideration. Typically, expensive and novel medical advancements are introduced in tertiary academic medical centers, where state-of-the-art infrastructure and trained personnel are available. However, ARS holds the greatest potential for regions lacking access to surgeons, making it crucial to define the optimal scenarios for its implementation. The technical demands of ARS will vary significantly depending on the type of procedure. Decision-making should prioritize a focused set of surgery-requiring conditions and assess the cumulative risk profile of offering ARS in regions with no existing treatment options. Key factors in this evaluation include: 1) procedure commonness; 2) ARS feasibility with current technology; 3) risk of adverse events from a robotic intervention; 4) procedure urgency (i.e., risk of no intervention); 5) risk of abandoning procedure in the setting of technical failure; 6) ability to have remote human oversight; and 7) current availability of resources in the target population/region. Based on these considerations, the initial stabilization of high-energy open skeletal trauma-particularly in active combat military settings-represents a highly feasible and valuable early application. Additionally, the future development of self-sufficient microrobots capable of operating without external imaging could further enhance the portability and accessibility of ARS as the technology matures.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"13301 ","pages":"48-62"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345380/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Surgery involves iterative identification of anatomical structures and intervention upon them. In recent years, machine-based tissue recognition has advanced substantially, enhancing the safety and efficacy of medical procedures by reducing uncertainty about structure identity through quantitative evaluation (e.g., tissue density, optical properties, fluorescence contrast). However, while tissue-identifying tools have progressed rapidly, the development of intervention tools has lagged. It is worth considering the eventual convergence of these technologies at their mature stage, culminating in autonomous robotic surgery (ARS). Beyond technical feasibility, deploying such a groundbreaking technology requires careful consideration. Typically, expensive and novel medical advancements are introduced in tertiary academic medical centers, where state-of-the-art infrastructure and trained personnel are available. However, ARS holds the greatest potential for regions lacking access to surgeons, making it crucial to define the optimal scenarios for its implementation. The technical demands of ARS will vary significantly depending on the type of procedure. Decision-making should prioritize a focused set of surgery-requiring conditions and assess the cumulative risk profile of offering ARS in regions with no existing treatment options. Key factors in this evaluation include: 1) procedure commonness; 2) ARS feasibility with current technology; 3) risk of adverse events from a robotic intervention; 4) procedure urgency (i.e., risk of no intervention); 5) risk of abandoning procedure in the setting of technical failure; 6) ability to have remote human oversight; and 7) current availability of resources in the target population/region. Based on these considerations, the initial stabilization of high-energy open skeletal trauma-particularly in active combat military settings-represents a highly feasible and valuable early application. Additionally, the future development of self-sufficient microrobots capable of operating without external imaging could further enhance the portability and accessibility of ARS as the technology matures.