The rise of scientific machine learning: a perspective on combining mechanistic modelling with machine learning for systems biology.

IF 2.3
Frontiers in systems biology Pub Date : 2024-08-02 eCollection Date: 2024-01-01 DOI:10.3389/fsysb.2024.1407994
Ben Noordijk, Monica L Garcia Gomez, Kirsten H W J Ten Tusscher, Dick de Ridder, Aalt D J van Dijk, Robert W Smith
{"title":"The rise of scientific machine learning: a perspective on combining mechanistic modelling with machine learning for systems biology.","authors":"Ben Noordijk, Monica L Garcia Gomez, Kirsten H W J Ten Tusscher, Dick de Ridder, Aalt D J van Dijk, Robert W Smith","doi":"10.3389/fsysb.2024.1407994","DOIUrl":null,"url":null,"abstract":"<p><p>Both machine learning and mechanistic modelling approaches have been used independently with great success in systems biology. Machine learning excels in deriving statistical relationships and quantitative prediction from data, while mechanistic modelling is a powerful approach to capture knowledge and infer causal mechanisms underpinning biological phenomena. Importantly, the strengths of one are the weaknesses of the other, which suggests that substantial gains can be made by combining machine learning with mechanistic modelling, a field referred to as Scientific Machine Learning (SciML). In this review we discuss recent advances in combining these two approaches for systems biology, and point out future avenues for its application in the biological sciences.</p>","PeriodicalId":73109,"journal":{"name":"Frontiers in systems biology","volume":"4 ","pages":"1407994"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341957/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsysb.2024.1407994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Both machine learning and mechanistic modelling approaches have been used independently with great success in systems biology. Machine learning excels in deriving statistical relationships and quantitative prediction from data, while mechanistic modelling is a powerful approach to capture knowledge and infer causal mechanisms underpinning biological phenomena. Importantly, the strengths of one are the weaknesses of the other, which suggests that substantial gains can be made by combining machine learning with mechanistic modelling, a field referred to as Scientific Machine Learning (SciML). In this review we discuss recent advances in combining these two approaches for systems biology, and point out future avenues for its application in the biological sciences.

科学机器学习的兴起:结合系统生物学的机械建模和机器学习的观点。
机器学习和机械建模方法在系统生物学中都得到了独立的应用,并取得了巨大的成功。机器学习擅长从数据中得出统计关系和定量预测,而机制建模是捕获知识和推断支撑生物现象的因果机制的强大方法。重要的是,一个的优势是另一个的弱点,这表明通过将机器学习与机械建模相结合,可以获得实质性的收益,这一领域被称为科学机器学习(scil)。在这篇综述中,我们讨论了将这两种方法结合在系统生物学中的最新进展,并指出了其在生物科学中的未来应用途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信