Surface-displayed silicatein-α enzyme in bioengineered E. coli enables biocementation and silica mineralization.

IF 2.3
Frontiers in systems biology Pub Date : 2024-05-30 eCollection Date: 2024-01-01 DOI:10.3389/fsysb.2024.1377188
Toriana N Vigil, Nikolas K Schwendeman, Melanie L M Grogger, Victoria L Morrison, Margaret C Warner, Nathaniel B Bone, Morgan T Vance, David C Morris, Kristi McElmurry, Bryan W Berger, J Jordan Steel
{"title":"Surface-displayed silicatein-α enzyme in bioengineered <i>E. coli</i> enables biocementation and silica mineralization.","authors":"Toriana N Vigil, Nikolas K Schwendeman, Melanie L M Grogger, Victoria L Morrison, Margaret C Warner, Nathaniel B Bone, Morgan T Vance, David C Morris, Kristi McElmurry, Bryan W Berger, J Jordan Steel","doi":"10.3389/fsysb.2024.1377188","DOIUrl":null,"url":null,"abstract":"<p><p>Biocementation is an exciting biomanufacturing alternative to common cement, which is a significant contributor of CO<sub>2</sub> greenhouse gas production. In nature biocementation processes are usually modulated via ureolytic microbes, such as <i>Sporosarcina pasteurii,</i> precipitating calcium carbonate to cement particles together, but these ureolytic reactions also produce ammonium and carbonate byproducts, which may have detrimental effects on the environment. As an alternative approach, this work examines biosilicification via surface-displayed silicatein-α in bio-engineered <i>E. coli</i> as an <i>in vivo</i> biocementation strategy. The surface-display of silicatein-α with ice nucleation protein is a novel protein fusion combination that effectively enables biosilicification, which is the polymerization of silica species in solution, from the surface of <i>E. coli</i> bacterial cells. Biosilicification with silicatein-α produces biocementation products with comparable compressive strength as <i>S. pasteurii.</i> This biosilicification approach takes advantage of the high silica content found naturally in sand and does not produce the ammonium and carbonate byproducts of ureolytic bacteria, making this a more environmentally friendly biocementation strategy.</p>","PeriodicalId":73109,"journal":{"name":"Frontiers in systems biology","volume":"4 ","pages":"1377188"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341959/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsysb.2024.1377188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biocementation is an exciting biomanufacturing alternative to common cement, which is a significant contributor of CO2 greenhouse gas production. In nature biocementation processes are usually modulated via ureolytic microbes, such as Sporosarcina pasteurii, precipitating calcium carbonate to cement particles together, but these ureolytic reactions also produce ammonium and carbonate byproducts, which may have detrimental effects on the environment. As an alternative approach, this work examines biosilicification via surface-displayed silicatein-α in bio-engineered E. coli as an in vivo biocementation strategy. The surface-display of silicatein-α with ice nucleation protein is a novel protein fusion combination that effectively enables biosilicification, which is the polymerization of silica species in solution, from the surface of E. coli bacterial cells. Biosilicification with silicatein-α produces biocementation products with comparable compressive strength as S. pasteurii. This biosilicification approach takes advantage of the high silica content found naturally in sand and does not produce the ammonium and carbonate byproducts of ureolytic bacteria, making this a more environmentally friendly biocementation strategy.

生物工程大肠杆菌表面显示的硅蛋白α酶能够实现生物胶结和硅矿化。
生物水泥是一种令人兴奋的替代普通水泥的生物制造技术,而普通水泥是二氧化碳温室气体生产的重要贡献者。在自然界中,生物胶结过程通常是通过溶脲菌(如巴氏孢杆菌)将碳酸钙沉淀成胶结颗粒来调节的,但这些溶脲反应也会产生铵和碳酸盐副产物,这可能对环境产生有害影响。作为一种替代方法,本研究通过生物工程大肠杆菌中表面显示的硅酸盐蛋白-α来研究生物硅化,作为一种体内生物胶结策略。硅蛋白-α与冰核蛋白的表面显示是一种新型的蛋白质融合组合,可以有效地实现生物硅化,即从大肠杆菌细胞表面开始的溶液中二氧化硅的聚合。硅酸盐蛋白-α的生物硅化作用产生的生物胶结产物具有与巴氏杆菌相当的抗压强度。这种生物硅化方法利用了砂中天然硅含量高的优势,并且不会产生溶尿细菌的铵和碳酸盐副产物,使其成为一种更环保的生物胶结策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信