Engineering morphogenesis of cell clusters with differentiable programming.

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ramya Deshpande, Francesco Mottes, Ariana-Dalia Vlad, Michael P Brenner, Alma Dal Co
{"title":"Engineering morphogenesis of cell clusters with differentiable programming.","authors":"Ramya Deshpande, Francesco Mottes, Ariana-Dalia Vlad, Michael P Brenner, Alma Dal Co","doi":"10.1038/s43588-025-00851-4","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the fundamental rules of organismal development is a central, unsolved problem in biology. These rules dictate how individual cellular actions coordinate over macroscopic numbers of cells to grow complex structures with exquisite functionality. We use recent advances in automatic differentiation to discover local interaction rules and genetic networks that yield emergent, systems-level characteristics in a model of development. We consider a growing tissue with cellular interactions mediated by morphogen diffusion, cell adhesion and mechanical stress. Each cell has an internal genetic network that is used to make decisions based on the cell's local environment. Here we show that one can learn the parameters governing cell interactions in the form of interpretable genetic networks for complex developmental scenarios. When combined with recent experimental advances measuring spatio-temporal dynamics and gene expression of cells in a growing tissue, the methodology outlined here offers a promising path to unraveling the cellular bases of development.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":18.3000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00851-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the fundamental rules of organismal development is a central, unsolved problem in biology. These rules dictate how individual cellular actions coordinate over macroscopic numbers of cells to grow complex structures with exquisite functionality. We use recent advances in automatic differentiation to discover local interaction rules and genetic networks that yield emergent, systems-level characteristics in a model of development. We consider a growing tissue with cellular interactions mediated by morphogen diffusion, cell adhesion and mechanical stress. Each cell has an internal genetic network that is used to make decisions based on the cell's local environment. Here we show that one can learn the parameters governing cell interactions in the form of interpretable genetic networks for complex developmental scenarios. When combined with recent experimental advances measuring spatio-temporal dynamics and gene expression of cells in a growing tissue, the methodology outlined here offers a promising path to unraveling the cellular bases of development.

可微规划细胞簇的工程形态发生。
理解有机体发育的基本规律是生物学中一个核心的、尚未解决的问题。这些规则决定了单个细胞的行为如何在宏观数量的细胞上协调,以生长出具有精致功能的复杂结构。我们使用自动分化的最新进展来发现局部相互作用规则和遗传网络,这些规则和遗传网络在发展模型中产生紧急的系统级特征。我们考虑一个生长组织与细胞相互作用介导的形态扩散,细胞粘附和机械应力。每个细胞都有一个内部遗传网络,用来根据细胞的局部环境做出决定。在这里,我们表明,人们可以学习控制细胞相互作用的参数在复杂的发育情景的可解释的遗传网络的形式。结合最近的实验进展,测量生长组织中细胞的时空动态和基因表达,本文概述的方法为揭示发育的细胞基础提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信