{"title":"Metagenomic sequence classification based on local sensitive hashing and Bi-LSTM.","authors":"Yan Qian, Lei Xiao, Yiding Zhou, Li Deng","doi":"10.1142/S021972002550012X","DOIUrl":null,"url":null,"abstract":"<p><p>Current metagenomic classification methods are limited by short <i>k</i>-mer lengths and database dependency, resulting in insufficient taxonomic resolution at the species and genus level. This study proposes the first method integrating Locality-Sensitive Hashing (LSH) and Bidirectional Long-Short Term Memory (Bi-LSTM) networks for metagenomic sequence classification. The approach reduces runtime reliance on reference databases by learning discriminative features directly from sequences, while supporting long <i>k</i>-mers. The method consists of three key steps: (1) <i>k</i>-mer representation via locality-sensitive hashing, (2) <i>k</i>-mer embedding implementation using the skip-gram model, (3) label assignment to embedded vectors, followed by training in a Bi-LSTM network. Experimental results demonstrate superior classification performance at the genus level compared to existing models. Future work will explore the application of this method in the rapid detection of clinical pathogens.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"23 4","pages":"2550012"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S021972002550012X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Current metagenomic classification methods are limited by short k-mer lengths and database dependency, resulting in insufficient taxonomic resolution at the species and genus level. This study proposes the first method integrating Locality-Sensitive Hashing (LSH) and Bidirectional Long-Short Term Memory (Bi-LSTM) networks for metagenomic sequence classification. The approach reduces runtime reliance on reference databases by learning discriminative features directly from sequences, while supporting long k-mers. The method consists of three key steps: (1) k-mer representation via locality-sensitive hashing, (2) k-mer embedding implementation using the skip-gram model, (3) label assignment to embedded vectors, followed by training in a Bi-LSTM network. Experimental results demonstrate superior classification performance at the genus level compared to existing models. Future work will explore the application of this method in the rapid detection of clinical pathogens.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.