{"title":"Role of astrocytes in the pathogenesis of perinatal brain injury.","authors":"Ling Li, Xuewei Cui, Baoli Zhu, Lele Zhou, Yaya Guo, Tianjing Liu, Yongyan Shi","doi":"10.1186/s10020-025-01328-w","DOIUrl":null,"url":null,"abstract":"<p><p>Astrocytes, the most abundant glial cells in the central nervous system (CNS), play critical roles in blood-brain barrier (BBB) maintenance, synaptogenesis, neurotransmission, and metabolic regulation. In response to perinatal brain injury, astrocytes release inflammatory mediators that drive neuroinflammation, disrupting normal brain development. Key signaling pathways, including Janus kinase/signal transducers and activators of transcription (JAK/STAT), nuclear factor kappa B (NF-κB), Notch, and glutamate transporter signaling, are activated during this process, contributing to astrocyte dysfunction and neuronal damage. Astrocytes also engage in dynamic crosstalk with microglia, oligodendrocytes, and neurons, further influencing the injury response. Biomarkers such as glial fibrillary acidic protein (GFAP) and calcium-binding protein (S100β) highlight astrocyte activation and its role in pathology. By targeting these signaling pathways and glial interactions, novel therapeutic strategies can be developed to mitigate neurodevelopmental and perinatal brain injuries associated with astrocyte dysfunction.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"277"},"PeriodicalIF":6.4000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345021/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01328-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Astrocytes, the most abundant glial cells in the central nervous system (CNS), play critical roles in blood-brain barrier (BBB) maintenance, synaptogenesis, neurotransmission, and metabolic regulation. In response to perinatal brain injury, astrocytes release inflammatory mediators that drive neuroinflammation, disrupting normal brain development. Key signaling pathways, including Janus kinase/signal transducers and activators of transcription (JAK/STAT), nuclear factor kappa B (NF-κB), Notch, and glutamate transporter signaling, are activated during this process, contributing to astrocyte dysfunction and neuronal damage. Astrocytes also engage in dynamic crosstalk with microglia, oligodendrocytes, and neurons, further influencing the injury response. Biomarkers such as glial fibrillary acidic protein (GFAP) and calcium-binding protein (S100β) highlight astrocyte activation and its role in pathology. By targeting these signaling pathways and glial interactions, novel therapeutic strategies can be developed to mitigate neurodevelopmental and perinatal brain injuries associated with astrocyte dysfunction.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.