ProT-GFDM: A generative fractional diffusion model for protein generation.

IF 4.1 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Computational and structural biotechnology journal Pub Date : 2025-08-05 eCollection Date: 2025-01-01 DOI:10.1016/j.csbj.2025.07.045
Xiao Liang, Wentao Ma, Eric Paquet, Herna Viktor, Wojtek Michalowski
{"title":"ProT-GFDM: A generative fractional diffusion model for protein generation.","authors":"Xiao Liang, Wentao Ma, Eric Paquet, Herna Viktor, Wojtek Michalowski","doi":"10.1016/j.csbj.2025.07.045","DOIUrl":null,"url":null,"abstract":"<p><p>This work introduces the generative fractional diffusion model for protein generation (ProT-GFDM), a novel generative framework that employs fractional stochastic dynamics for protein backbone structure modeling. This approach builds on the continuous-time score-based generative diffusion modeling paradigm, where data are progressively transformed into noise via a stochastic differential equation and reversed to generate structured samples. Unlike classical methods that rely on standard Brownian motion, ProT-GFDM employs a fractional stochastic process with superdiffusive properties to improve the capture of long-range dependencies in protein structures. By integrating fractional dynamics with computationally efficient sampling, the proposed framework advances generative modeling for structured biological data, with implications for protein design and computational drug discovery.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"3464-3480"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345337/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.07.045","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces the generative fractional diffusion model for protein generation (ProT-GFDM), a novel generative framework that employs fractional stochastic dynamics for protein backbone structure modeling. This approach builds on the continuous-time score-based generative diffusion modeling paradigm, where data are progressively transformed into noise via a stochastic differential equation and reversed to generate structured samples. Unlike classical methods that rely on standard Brownian motion, ProT-GFDM employs a fractional stochastic process with superdiffusive properties to improve the capture of long-range dependencies in protein structures. By integrating fractional dynamics with computationally efficient sampling, the proposed framework advances generative modeling for structured biological data, with implications for protein design and computational drug discovery.

ProT-GFDM:蛋白质生成的生成分数扩散模型。
这项工作介绍了蛋白质生成的生成分数扩散模型(ProT-GFDM),这是一种采用分数随机动力学进行蛋白质骨干结构建模的新型生成框架。这种方法建立在基于连续时间分数的生成扩散建模范式的基础上,其中数据通过随机微分方程逐步转换为噪声,并反向生成结构化样本。与依赖标准布朗运动的经典方法不同,ProT-GFDM采用具有超扩散特性的分数随机过程来改善蛋白质结构中远程依赖关系的捕获。通过将分数动力学与计算效率采样相结合,提出的框架推进了结构化生物数据的生成建模,对蛋白质设计和计算药物发现具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信