{"title":"Combined Quantile Forecasting for High-Dimensional Non-Gaussian Data","authors":"Seeun Park, Hee-Seok Oh, Yaeji Lim","doi":"10.1002/env.70035","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study proposes a novel method for forecasting a scalar variable based on high-dimensional predictors that is applicable to various data distributions. In the literature, one of the popular approaches for forecasting with many predictors is to use factor models. However, these traditional methods are ineffective when the data exhibit non-Gaussian characteristics such as skewness or heavy tails. In this study, we newly utilize a quantile factor model to extract quantile factors that describe specific quantiles of the data beyond the mean factor. We then build a quantile-based forecast model using the estimated quantile factors at different quantile levels as predictors. Finally, the predicted values at various quantile levels are combined into a single forecast as a weighted average with weights determined by a Markov chain based on past trends of the target variable. The main idea of the proposed method is to effectively incorporate a quantile approach into a forecasting method to handle non-Gaussian characteristics. The performance of the proposed method is evaluated through a simulation study and real data analysis of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mtext>PM</mtext>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mo>.</mo>\n <mn>5</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{PM}}_{2.5} $$</annotation>\n </semantics></math> data in South Korea, where the proposed method outperforms other existing methods in most cases.</p>\n </div>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"36 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.70035","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a novel method for forecasting a scalar variable based on high-dimensional predictors that is applicable to various data distributions. In the literature, one of the popular approaches for forecasting with many predictors is to use factor models. However, these traditional methods are ineffective when the data exhibit non-Gaussian characteristics such as skewness or heavy tails. In this study, we newly utilize a quantile factor model to extract quantile factors that describe specific quantiles of the data beyond the mean factor. We then build a quantile-based forecast model using the estimated quantile factors at different quantile levels as predictors. Finally, the predicted values at various quantile levels are combined into a single forecast as a weighted average with weights determined by a Markov chain based on past trends of the target variable. The main idea of the proposed method is to effectively incorporate a quantile approach into a forecasting method to handle non-Gaussian characteristics. The performance of the proposed method is evaluated through a simulation study and real data analysis of data in South Korea, where the proposed method outperforms other existing methods in most cases.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.