{"title":"Tapping the microalgal potential: genetic precision and stress-induction for enhanced astaxanthin and biofuel production","authors":"Ankush Yadav, Suhani Sharma, Nitesh, Rinku Meena, Rupesh Bhardwaj, Prashant Swapnil, Mukesh Meena","doi":"10.1186/s13068-025-02656-z","DOIUrl":null,"url":null,"abstract":"<div><p>Population growth throughout the world has led to increased pollution and overconsumption of fossil resources. Microalgae are increasingly recognized as sustainable biofactories for producing lipids and astaxanthin, two commercially significant metabolites with wide-ranging applications in biofuel, pharmaceutical, cosmetic, and nutraceutical industries. Enhancing the yields of these compounds remains a major challenge due to growth–productivity trade-offs and limited understanding of regulatory mechanisms. This review aims to bridge that gap by providing a comprehensive and comparative analysis of traditional and modern strategies employed to enhance lipid and astaxanthin production in microalgae. We critically evaluate stress-based methods (e.g., salinity, light, nutrient limitation), phytohormone treatments, cultivation system optimization, and genome editing technologies, including CRISPR/Cas9. Special emphasis is given to gene-level responses and pathway-level regulation involved in these enhancements. This review article highlights the novel synchronization between astaxanthin and fatty acid biosynthesis under various stress conditions which emphasizes the role of diacylglycerol acyltransferase (DGAT) enzymes to enhance astaxanthin accumulation. Editing technologies with base suggest a novel strategy to reduce off-target effects and enhance metabolic efficiency related to lipid and astaxanthin biosynthesis.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02656-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02656-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Population growth throughout the world has led to increased pollution and overconsumption of fossil resources. Microalgae are increasingly recognized as sustainable biofactories for producing lipids and astaxanthin, two commercially significant metabolites with wide-ranging applications in biofuel, pharmaceutical, cosmetic, and nutraceutical industries. Enhancing the yields of these compounds remains a major challenge due to growth–productivity trade-offs and limited understanding of regulatory mechanisms. This review aims to bridge that gap by providing a comprehensive and comparative analysis of traditional and modern strategies employed to enhance lipid and astaxanthin production in microalgae. We critically evaluate stress-based methods (e.g., salinity, light, nutrient limitation), phytohormone treatments, cultivation system optimization, and genome editing technologies, including CRISPR/Cas9. Special emphasis is given to gene-level responses and pathway-level regulation involved in these enhancements. This review article highlights the novel synchronization between astaxanthin and fatty acid biosynthesis under various stress conditions which emphasizes the role of diacylglycerol acyltransferase (DGAT) enzymes to enhance astaxanthin accumulation. Editing technologies with base suggest a novel strategy to reduce off-target effects and enhance metabolic efficiency related to lipid and astaxanthin biosynthesis.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis