Jin-hao Liu, Dong-sen An, Jian-zhong Zhu, Yi Zhang, Qing-long Zhu, Fu-jun Wang, Chao-yue Wang
{"title":"Vortex dynamics mechanism of the staggered impeller suppressing pressure fluctuations in a double-suction centrifugal pump","authors":"Jin-hao Liu, Dong-sen An, Jian-zhong Zhu, Yi Zhang, Qing-long Zhu, Fu-jun Wang, Chao-yue Wang","doi":"10.1007/s42241-025-0017-2","DOIUrl":null,"url":null,"abstract":"<div><p>The fact that the staggered impeller of a double-suction centrifugal pump can effectively suppress pressure fluctuations has been proved by engineering practice, but the flow mechanism behind it is still not fully understood. In this study, numerical simulations with a proof experiment were conducted, and the vortex dynamics analyses were performed using the newly developed rigid vorticity (Liutex) theory. The following valuable results are obtained: (1) In terms of the intuitive vortex structure, each blade of the impeller induces a trailing vortex rope with a strong rigid vorticity, which gradually evolves inside the volute casing with the rotation of the impeller. The trailing vortex ropes of the symmetric impeller are symmetrically distributed, while those of the staggered impeller present a staggered distribution, and the latter corresponds to a relatively lower rigid vorticity. (2) In terms of the correlation between the vortex and the pressure, the high rigid vorticity zone corresponds to the low-pressure zone. For a fixed point in the volute casing, there is a major “falling-rising” fluctuation in pressure as the symmetric vortex ropes transit it simultaneously, and a minor “falling-rising” fluctuation in pressure as the staggered vortex ropes transit it successively, corresponding to a lower peak-to-peak value of the pressure fluctuations. (3) In terms of the relation between the vortex and the velocity, the vortex ropes induced by the left and right impellers are counter-rotating and develop along the radial direction. This pattern results in high-speed zones at the middle part of the cross-section of the volute casing, both in the streamwise and radial directions, and contributes to velocity fluctuations due to the evolving vortex rope. However, the staggered distribution of vortex ropes can weaken the coupling of vortex pairs, thereby causing lower velocity and pressure pulsations, but can make the main frequency twice that of the symmetric impeller. This study enriches our physical knowledge by revealing the vortex dynamics mechanism of the staggered impeller of a double-suction centrifugal pump to suppress pressure fluctuations.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"37 2","pages":"209 - 229"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-025-0017-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The fact that the staggered impeller of a double-suction centrifugal pump can effectively suppress pressure fluctuations has been proved by engineering practice, but the flow mechanism behind it is still not fully understood. In this study, numerical simulations with a proof experiment were conducted, and the vortex dynamics analyses were performed using the newly developed rigid vorticity (Liutex) theory. The following valuable results are obtained: (1) In terms of the intuitive vortex structure, each blade of the impeller induces a trailing vortex rope with a strong rigid vorticity, which gradually evolves inside the volute casing with the rotation of the impeller. The trailing vortex ropes of the symmetric impeller are symmetrically distributed, while those of the staggered impeller present a staggered distribution, and the latter corresponds to a relatively lower rigid vorticity. (2) In terms of the correlation between the vortex and the pressure, the high rigid vorticity zone corresponds to the low-pressure zone. For a fixed point in the volute casing, there is a major “falling-rising” fluctuation in pressure as the symmetric vortex ropes transit it simultaneously, and a minor “falling-rising” fluctuation in pressure as the staggered vortex ropes transit it successively, corresponding to a lower peak-to-peak value of the pressure fluctuations. (3) In terms of the relation between the vortex and the velocity, the vortex ropes induced by the left and right impellers are counter-rotating and develop along the radial direction. This pattern results in high-speed zones at the middle part of the cross-section of the volute casing, both in the streamwise and radial directions, and contributes to velocity fluctuations due to the evolving vortex rope. However, the staggered distribution of vortex ropes can weaken the coupling of vortex pairs, thereby causing lower velocity and pressure pulsations, but can make the main frequency twice that of the symmetric impeller. This study enriches our physical knowledge by revealing the vortex dynamics mechanism of the staggered impeller of a double-suction centrifugal pump to suppress pressure fluctuations.
期刊介绍:
Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.