Adaptive Electromagnetic Analysis via Non-Euclidean Manifold Learning for Atmospheric Precipitation Understanding

IF 4.4
Tian Fu;Tianliang Yao;Haoyu Wang;Bin Chen
{"title":"Adaptive Electromagnetic Analysis via Non-Euclidean Manifold Learning for Atmospheric Precipitation Understanding","authors":"Tian Fu;Tianliang Yao;Haoyu Wang;Bin Chen","doi":"10.1109/LGRS.2025.3596318","DOIUrl":null,"url":null,"abstract":"The advent of dual-polarization meteorological sensing systems has revolutionized our capacity to comprehend atmospheric precipitation dynamics through electromagnetic signal analysis. However, the intricate nonlinear relationships within high-dimensional polarimetric signatures present formidable challenges in extracting actionable intelligence for meteorological multimedia applications. This paper presents HyperSpectral-M, a computational framework that enhances polarimetric signal interpretation through systematic manifold learning approaches in non-Euclidean spaces, enabling more precise analysis of complex atmospheric phenomena. The proposed HyperSpectral-M framework addresses the limitations of the existing methods by incorporating two key innovations: a signal disentanglement mechanism (SDM) and a physics-constrained reconstruction paradigm (PCRP). The disentanglement mechanism employs quaternion-based geodesic flow mapping coupled with adaptive spectral decomposition (SD) to project polarimetric signatures onto lower dimensional manifolds while preserving critical microphysical properties. This is augmented by a multiscale differential geometry analyzer that captures intricate spatiotemporal correlations across varying atmospheric conditions. The reconstruction paradigm leverages adversarial manifold alignment with structured probabilistic inference to synthesize high-fidelity radar representations while maintaining electromagnetic consistency constraints. HyperSpectral-M demonstrates significant real-world impact on meteorological applications by improving precipitation nowcasting accuracy by 15–20% compared to operational methods, enabling more timely and accurate flood warnings. Field validation with emergency management agencies shows that reduces false alarm rates by 30–40% while increasing lead time for severe weather warnings by 15–30 min.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11115097/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of dual-polarization meteorological sensing systems has revolutionized our capacity to comprehend atmospheric precipitation dynamics through electromagnetic signal analysis. However, the intricate nonlinear relationships within high-dimensional polarimetric signatures present formidable challenges in extracting actionable intelligence for meteorological multimedia applications. This paper presents HyperSpectral-M, a computational framework that enhances polarimetric signal interpretation through systematic manifold learning approaches in non-Euclidean spaces, enabling more precise analysis of complex atmospheric phenomena. The proposed HyperSpectral-M framework addresses the limitations of the existing methods by incorporating two key innovations: a signal disentanglement mechanism (SDM) and a physics-constrained reconstruction paradigm (PCRP). The disentanglement mechanism employs quaternion-based geodesic flow mapping coupled with adaptive spectral decomposition (SD) to project polarimetric signatures onto lower dimensional manifolds while preserving critical microphysical properties. This is augmented by a multiscale differential geometry analyzer that captures intricate spatiotemporal correlations across varying atmospheric conditions. The reconstruction paradigm leverages adversarial manifold alignment with structured probabilistic inference to synthesize high-fidelity radar representations while maintaining electromagnetic consistency constraints. HyperSpectral-M demonstrates significant real-world impact on meteorological applications by improving precipitation nowcasting accuracy by 15–20% compared to operational methods, enabling more timely and accurate flood warnings. Field validation with emergency management agencies shows that reduces false alarm rates by 30–40% while increasing lead time for severe weather warnings by 15–30 min.
基于非欧几里得流形学习的大气降水自适应电磁分析
双极化气象传感系统的出现彻底改变了我们通过电磁信号分析来理解大气降水动力学的能力。然而,高维极化特征中复杂的非线性关系在提取气象多媒体应用的可操作情报方面提出了巨大的挑战。本文介绍了HyperSpectral-M,这是一个计算框架,通过非欧几里得空间中的系统流形学习方法增强极化信号解释,从而能够更精确地分析复杂的大气现象。提出的HyperSpectral-M框架通过结合两个关键创新解决了现有方法的局限性:信号解纠缠机制(SDM)和物理约束重建范式(PCRP)。解纠缠机制采用基于四元数的测地流映射与自适应光谱分解(SD)相结合,将极化特征投射到低维流形上,同时保持关键的微物理性质。这是由一个多尺度微分几何分析仪,捕捉复杂的时空相关性在不同的大气条件下增强。重建范式利用对抗流形对齐和结构化概率推理来合成高保真雷达表示,同时保持电磁一致性约束。与操作方法相比,HyperSpectral-M将降水临近预报精度提高了15-20%,实现了更及时、更准确的洪水预警,对气象应用产生了重大影响。与应急管理机构的现场验证表明,该系统将误报率降低了30-40%,同时将恶劣天气预警的前置时间提高了15-30分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信