Harmonized spatial-frequency domain synergy driven geospatial feature synthesis for enhanced SAR semantic segmentation

IF 8.6 Q1 REMOTE SENSING
Minhong Sun , Han Yang , Zihan Xia , Fengjiao Gan , Zhao Huang , Zhiwen Zheng , Lou Zhao , Chunshan Liu , Zhaoyang Xu , Yun Lin , Guan Gui , Xiaoshuai Zhang , Xingru Huang , Jin Liu
{"title":"Harmonized spatial-frequency domain synergy driven geospatial feature synthesis for enhanced SAR semantic segmentation","authors":"Minhong Sun ,&nbsp;Han Yang ,&nbsp;Zihan Xia ,&nbsp;Fengjiao Gan ,&nbsp;Zhao Huang ,&nbsp;Zhiwen Zheng ,&nbsp;Lou Zhao ,&nbsp;Chunshan Liu ,&nbsp;Zhaoyang Xu ,&nbsp;Yun Lin ,&nbsp;Guan Gui ,&nbsp;Xiaoshuai Zhang ,&nbsp;Xingru Huang ,&nbsp;Jin Liu","doi":"10.1016/j.jag.2025.104754","DOIUrl":null,"url":null,"abstract":"<div><div>The phase coherence of radar signals makes synthetic aperture radar (SAR) image analysis prone to significant challenges. Echo signal interference introduces speckle noise during imaging; noise appears as random fluctuations in pixel intensities. Besides, coherence exacerbates geometric distortions, complicating the accurate interpretation of spatial distributions within intricate geographic entities, thereby making it difficult to extract meaningful target information from SAR images. Addressing these challenges, this study introduces the DEcomposed-frequency PrOjection Network (Depo-Net), a segmentation-oriented model that mitigates SAR-specific interference through frequency-domain self-attention. It employs a dual-encoder structure for efficient semantic extraction and integrates Spatio-Frequency Synergistic Modulation (SFSM) to minimize speckle noise while maintaining structural integrity in the frequency domain. Additionally, the Harmonized Subspace Spectro-Temporal Attention (HSSTA) synthesizes Discrete Fourier and Wavelet Transform analyses to capture complex spatial correlations among geographic features. To mitigate noise amplification during decoding, the Pluri-frequency Mamba (purfMamba) module synergizes multi-dimensional spectral-spatial features, facilitating noise suppression during high-resolution restoration and maintaining a balance between global structure and local details. Results on three public SAR segmentation datasets demonstrate Depo-Net’s efficacy outperforming 22 previous State-of-the-Art (SOTA) methods while minimizing 95th Percentile Hausdorff Distance values. The complete code and model implementation is available on GitHub at <span><span>https://github.com/IMOP-lab/Depo-Net</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"143 ","pages":"Article 104754"},"PeriodicalIF":8.6000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225004017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

The phase coherence of radar signals makes synthetic aperture radar (SAR) image analysis prone to significant challenges. Echo signal interference introduces speckle noise during imaging; noise appears as random fluctuations in pixel intensities. Besides, coherence exacerbates geometric distortions, complicating the accurate interpretation of spatial distributions within intricate geographic entities, thereby making it difficult to extract meaningful target information from SAR images. Addressing these challenges, this study introduces the DEcomposed-frequency PrOjection Network (Depo-Net), a segmentation-oriented model that mitigates SAR-specific interference through frequency-domain self-attention. It employs a dual-encoder structure for efficient semantic extraction and integrates Spatio-Frequency Synergistic Modulation (SFSM) to minimize speckle noise while maintaining structural integrity in the frequency domain. Additionally, the Harmonized Subspace Spectro-Temporal Attention (HSSTA) synthesizes Discrete Fourier and Wavelet Transform analyses to capture complex spatial correlations among geographic features. To mitigate noise amplification during decoding, the Pluri-frequency Mamba (purfMamba) module synergizes multi-dimensional spectral-spatial features, facilitating noise suppression during high-resolution restoration and maintaining a balance between global structure and local details. Results on three public SAR segmentation datasets demonstrate Depo-Net’s efficacy outperforming 22 previous State-of-the-Art (SOTA) methods while minimizing 95th Percentile Hausdorff Distance values. The complete code and model implementation is available on GitHub at https://github.com/IMOP-lab/Depo-Net.
协调空频域协同驱动的地理空间特征合成增强SAR语义分割
雷达信号的相位相干性给合成孔径雷达(SAR)图像分析带来了很大的挑战。回波信号干扰在成像过程中引入散斑噪声;噪声表现为像素强度的随机波动。此外,相干性加剧了几何畸变,使对复杂地理实体内空间分布的准确解释复杂化,从而使从SAR图像中提取有意义的目标信息变得困难。为了应对这些挑战,本研究引入了分解频率投影网络(Depo-Net),这是一种面向分割的模型,通过频域自关注来减轻sar特定的干扰。它采用双编码器结构进行有效的语义提取,并集成了空间-频率协同调制(smfsm),在保持频域结构完整性的同时最小化散斑噪声。此外,调和子空间光谱-时间注意(HSSTA)综合了离散傅里叶和小波变换分析,以捕获地理特征之间复杂的空间相关性。为了减轻解码过程中的噪声放大,多频曼巴(purfMamba)模块协同多维频谱空间特征,促进高分辨率恢复过程中的噪声抑制,并保持全局结构和局部细节之间的平衡。在三个公共SAR分割数据集上的结果表明,Depo-Net的有效性优于22种先前的最先进(SOTA)方法,同时最小化了第95百分位豪斯多夫距离值。完整的代码和模型实现可在GitHub上获得https://github.com/IMOP-lab/Depo-Net。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信