Two stabilized finite element methods based on local polynomial pressure projection for the steady-state Navier–Stokes–Darcy problem

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED
Liyun Zuo , Guangzhi Du
{"title":"Two stabilized finite element methods based on local polynomial pressure projection for the steady-state Navier–Stokes–Darcy problem","authors":"Liyun Zuo ,&nbsp;Guangzhi Du","doi":"10.1016/j.finel.2025.104420","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents two stabilized finite element methods based on local polynomial pressure projections for the mixed steady-state Navier–Stokes–Darcy problem by utilizing the equal order finite element pairs, the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-<span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> element pairs, for approximating the fluid velocity, kinematic pressure and dynamic pressure, respectively. The presented stabilized methods possess many chief characteristics, for instance, parameter free, simple calculation, element level implementation. The optimal error estimates are established. Finally, some comprehensively numerical tests are reported to examine the efficiency and robustness of the proposed algorithms.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"251 ","pages":"Article 104420"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X2500109X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents two stabilized finite element methods based on local polynomial pressure projections for the mixed steady-state Navier–Stokes–Darcy problem by utilizing the equal order finite element pairs, the P1-P1-P1 and P2-P2-P2 element pairs, for approximating the fluid velocity, kinematic pressure and dynamic pressure, respectively. The presented stabilized methods possess many chief characteristics, for instance, parameter free, simple calculation, element level implementation. The optimal error estimates are established. Finally, some comprehensively numerical tests are reported to examine the efficiency and robustness of the proposed algorithms.
求解稳态Navier-Stokes-Darcy问题的两种基于局部多项式压力投影的稳定有限元方法
针对混合稳态Navier-Stokes-Darcy问题,利用等阶有限元对P1-P1-P1和P2-P2-P2单元对分别逼近流体速度、运动压力和动压力,提出了两种基于局部多项式压力投影的稳定有限元方法。所提出的稳定方法具有无参数、计算简单、单元级实现等主要特点。建立了最优误差估计。最后,通过数值实验验证了所提算法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信