Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2

IF 13.5 2区 化学 Q1 CHEMISTRY, PHYSICAL
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang
{"title":"Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2","authors":"Xinyu Xu ,&nbsp;Jiale Lu ,&nbsp;Bo Su ,&nbsp;Jiayi Chen ,&nbsp;Xiong Chen ,&nbsp;Sibo Wang","doi":"10.1016/j.actphy.2025.100153","DOIUrl":null,"url":null,"abstract":"<div><div>The selective oxidation of methane to value-added chemicals under mild conditions presents a sustainable yet challenging route, hindered by sluggish CH<sub>4</sub> activation and overoxidation. Herein, we report a delicate strategy combining Ti doping and Au loading to construct a high-performance Au/Ti-CeO<sub>2</sub> photocatalyst for ethane production from oxidative methane coupling. The optimized catalyst achieves a C<sub>2</sub>H<sub>6</sub> production rate of 2971.4 μmol g<sup>−1</sup> h<sup>−1</sup> with 85.1 % C<sub>2+</sub> selectivity, stably operating over 20 reaction cycles. <em>In situ</em> X-ray photoelectron spectroscopy, electron paramagnetic resonance, and diffuse reflectance infrared Fourier transform spectroscopy analyses reveal that Ti doping introduces impurity energy levels into CeO<sub>2</sub>, promoting directional electron migration to surface Au nanoparticles (NPs) <em>via</em> a built-in electric field. The Au NPs act as electron accumulation sites to activate O<sub>2</sub>, facilitate ∗CH<sub>3</sub> radical coupling into C<sub>2</sub>H<sub>6</sub>, and stabilize reactive intermediates, thus enhancing charge separation and suppressing intermediate overoxidation. This study highlights the significance of synergistic modulation <em>via</em> elemental doping and cocatalyst engineering in tuning charge dynamics and surface reactivity for efficient photocatalytic methane conversion.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 11","pages":"Article 100153"},"PeriodicalIF":13.5000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825001092","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The selective oxidation of methane to value-added chemicals under mild conditions presents a sustainable yet challenging route, hindered by sluggish CH4 activation and overoxidation. Herein, we report a delicate strategy combining Ti doping and Au loading to construct a high-performance Au/Ti-CeO2 photocatalyst for ethane production from oxidative methane coupling. The optimized catalyst achieves a C2H6 production rate of 2971.4 μmol g−1 h−1 with 85.1 % C2+ selectivity, stably operating over 20 reaction cycles. In situ X-ray photoelectron spectroscopy, electron paramagnetic resonance, and diffuse reflectance infrared Fourier transform spectroscopy analyses reveal that Ti doping introduces impurity energy levels into CeO2, promoting directional electron migration to surface Au nanoparticles (NPs) via a built-in electric field. The Au NPs act as electron accumulation sites to activate O2, facilitate ∗CH3 radical coupling into C2H6, and stabilize reactive intermediates, thus enhancing charge separation and suppressing intermediate overoxidation. This study highlights the significance of synergistic modulation via elemental doping and cocatalyst engineering in tuning charge dynamics and surface reactivity for efficient photocatalytic methane conversion.

Abstract Image

Au/Ti-CeO2光催化选择性甲烷氧化制乙烷的转向电荷动力学和表面反应性
甲烷在温和条件下选择性氧化生成增值化学品是一条可持续但具有挑战性的途径,受到CH4激活缓慢和过度氧化的阻碍。本文报道了一种结合Ti掺杂和Au负载的精细策略,构建了一种用于氧化甲烷偶联生产乙烷的高性能Au/Ti- ceo2光催化剂。优化后的催化剂C2H6产率为2971.4 μmol g−1 h−1,C2+选择性为85.1%,可稳定运行20个反应周期。原位x射线光电子能谱、电子顺磁共振和漫反射红外傅立叶变换能谱分析表明,Ti掺杂在CeO2中引入了杂质能级,通过内置电场促进了电子向表面金纳米粒子(NPs)的定向迁移。Au NPs作为电子积累位点激活O2,促进∗CH3自由基偶联到C2H6,稳定活性中间体,从而促进电荷分离和抑制中间体过度氧化。本研究强调了通过元素掺杂和助催化剂工程进行协同调制在调整电荷动力学和表面反应性以实现高效光催化甲烷转化方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
物理化学学报
物理化学学报 化学-物理化学
CiteScore
16.60
自引率
5.50%
发文量
9754
审稿时长
1.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信