Thi-Tuyen Nguyen , Wenqing Zheng , Van-Nui Nguyen , Nguyen Quoc Khanh Le , Matthew Chin Heng Chua
{"title":"A unified graph-based approach for protein function prediction using AlphaFold structures and sequence features","authors":"Thi-Tuyen Nguyen , Wenqing Zheng , Van-Nui Nguyen , Nguyen Quoc Khanh Le , Matthew Chin Heng Chua","doi":"10.1016/j.compbiolchem.2025.108609","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting protein function is a key challenge in computational biology with broad implications for understanding biological systems and disease mechanisms. Traditional deep learning approaches rely heavily on protein sequence data and protein–protein interaction (PPI) networks, often neglecting structural information due to limited availability of experimentally resolved protein structures. The advent of AlphaFold, which predicts protein structures with near-atomic accuracy, provides an opportunity to integrate structural context into function prediction. In this study, we propose StructSeq2GO, a novel hybrid model that combines structural and sequence information. StructSeq2GO employs graph representation learning to extract structural features from AlphaFold-predicted protein structures and integrates them with sequence embeddings derived from the ProteinBERT language model to predict Gene Ontology (GO) labels. Experimental evaluations demonstrate that StructSeq2GO achieves state-of-the-art performance across three GO domains, with <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></math></span> scores of 0.485, 0.681, and 0.663, AUC scores of 0.764, 0.939, and 0.891, and AUPR scores of 0.688, 0.763, and 0.702 for the Biological Process (BPO), Cellular Component (CCO), and Molecular Function (MFO) ontologies, respectively. These results highlight the critical importance of structural information and the efficacy of ProteinBERT in enhancing protein function prediction, as structure provides spatial and biochemical context not captured by sequence alone. The model’s performance is influenced by the quality of AlphaFold structural predictions and may benefit from future improvements in structure confidence modeling. Additionally, extending StructSeq2GO to predict pathway-level or disease-related annotations could broaden its biological utility.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"120 ","pages":"Article 108609"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927125002701","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting protein function is a key challenge in computational biology with broad implications for understanding biological systems and disease mechanisms. Traditional deep learning approaches rely heavily on protein sequence data and protein–protein interaction (PPI) networks, often neglecting structural information due to limited availability of experimentally resolved protein structures. The advent of AlphaFold, which predicts protein structures with near-atomic accuracy, provides an opportunity to integrate structural context into function prediction. In this study, we propose StructSeq2GO, a novel hybrid model that combines structural and sequence information. StructSeq2GO employs graph representation learning to extract structural features from AlphaFold-predicted protein structures and integrates them with sequence embeddings derived from the ProteinBERT language model to predict Gene Ontology (GO) labels. Experimental evaluations demonstrate that StructSeq2GO achieves state-of-the-art performance across three GO domains, with scores of 0.485, 0.681, and 0.663, AUC scores of 0.764, 0.939, and 0.891, and AUPR scores of 0.688, 0.763, and 0.702 for the Biological Process (BPO), Cellular Component (CCO), and Molecular Function (MFO) ontologies, respectively. These results highlight the critical importance of structural information and the efficacy of ProteinBERT in enhancing protein function prediction, as structure provides spatial and biochemical context not captured by sequence alone. The model’s performance is influenced by the quality of AlphaFold structural predictions and may benefit from future improvements in structure confidence modeling. Additionally, extending StructSeq2GO to predict pathway-level or disease-related annotations could broaden its biological utility.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.