{"title":"Structural and magnetic properties of vacuum and air annealed CoFe2O4 nanoparticles","authors":"Balaji Srikanth Ragunath , A. Thileeba , K.R.S. Preethi Meher , Karthik Chinnathambi , Ayyappan Sathya","doi":"10.1016/j.ssc.2025.116107","DOIUrl":null,"url":null,"abstract":"<div><div>CoFe<sub>2</sub>O<sub>4</sub> (CFO) nanoparticles (NPs) were synthesized by co-precipitation technique and annealed up to 1273K under air and vacuum atmospheres. X-ray diffraction (XRD) analysis of pristine, vacuum and air - annealed samples confirms the spinel structure without any secondary phases. Transmission electron microscopy (TEM) of pristine CFO NPs confirms a wider distribution with an average particle size of 26 ± 7 nm. Further, the estimated activation energy for the growth of CFO NPs under vacuum and air atmosphere is 14.5 kJ/mol and 20.4 kJ/mol respectively. A relative decrease in activation energy for the vacuum − annealed samples suggest part of the thermal energy is utilized for cation migration between the interstitial sites of the spinel structure. Further, the cation migration is unambiguously confirmed by Raman spectroscopy. This study further reveals that the improved saturation magnetization upon vacuum annealing (from 47 emu/g to 80 emu/g) compared to air annealing (76 emu/g) is mainly due to the cation migration and the creation of oxygen vacancies.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"404 ","pages":"Article 116107"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109825002820","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
CoFe2O4 (CFO) nanoparticles (NPs) were synthesized by co-precipitation technique and annealed up to 1273K under air and vacuum atmospheres. X-ray diffraction (XRD) analysis of pristine, vacuum and air - annealed samples confirms the spinel structure without any secondary phases. Transmission electron microscopy (TEM) of pristine CFO NPs confirms a wider distribution with an average particle size of 26 ± 7 nm. Further, the estimated activation energy for the growth of CFO NPs under vacuum and air atmosphere is 14.5 kJ/mol and 20.4 kJ/mol respectively. A relative decrease in activation energy for the vacuum − annealed samples suggest part of the thermal energy is utilized for cation migration between the interstitial sites of the spinel structure. Further, the cation migration is unambiguously confirmed by Raman spectroscopy. This study further reveals that the improved saturation magnetization upon vacuum annealing (from 47 emu/g to 80 emu/g) compared to air annealing (76 emu/g) is mainly due to the cation migration and the creation of oxygen vacancies.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.