Edge semantic collaboration network for salient object detection in optical remote sensing images

IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yanzhao Wang , Yanping Yao , Tongchi Zhou , Zhongyun Liu , Li Yan , Long Zhu
{"title":"Edge semantic collaboration network for salient object detection in optical remote sensing images","authors":"Yanzhao Wang ,&nbsp;Yanping Yao ,&nbsp;Tongchi Zhou ,&nbsp;Zhongyun Liu ,&nbsp;Li Yan ,&nbsp;Long Zhu","doi":"10.1016/j.dsp.2025.105536","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid development of deep learning has promoted the development of salient object detection in optical remote sensing images (ORSI-SOD). However, ORSI-SOD faces many challenges, including the interference of color and shadow backgrounds, or the uncertainty of the number and scale of objects in optical remote sensing images (ORSIs). Most of the existing models have difficulty in establishing effective long-distance feature dependencies. To address this issue, we propose an edge semantic collaboration network (ESCNet). Specifically, ESCNet designs an Interactive Graph Inference Module (IGIM) to model channel interactions and capture long-distance semantic dependencies via graph inference. Then, a Semantic Feature Enhancement Module (SFEM) is adopted to refine the dependency information based on a composite attention mechanism. Simultaneously, a Multi-scale Edge Refinement Module (MERM) extracts precise boundaries using multi-scale feature refinement. Finally, the features produced at each stage are sequentially fed into the decoder and generate the final saliency maps. Extensive experiments on three public datasets (ORSSD, EORSSD, and ORSI-4199) confirm the superiority of the proposed ESCNet compared with state-of-the-art methods.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"168 ","pages":"Article 105536"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200425005585","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of deep learning has promoted the development of salient object detection in optical remote sensing images (ORSI-SOD). However, ORSI-SOD faces many challenges, including the interference of color and shadow backgrounds, or the uncertainty of the number and scale of objects in optical remote sensing images (ORSIs). Most of the existing models have difficulty in establishing effective long-distance feature dependencies. To address this issue, we propose an edge semantic collaboration network (ESCNet). Specifically, ESCNet designs an Interactive Graph Inference Module (IGIM) to model channel interactions and capture long-distance semantic dependencies via graph inference. Then, a Semantic Feature Enhancement Module (SFEM) is adopted to refine the dependency information based on a composite attention mechanism. Simultaneously, a Multi-scale Edge Refinement Module (MERM) extracts precise boundaries using multi-scale feature refinement. Finally, the features produced at each stage are sequentially fed into the decoder and generate the final saliency maps. Extensive experiments on three public datasets (ORSSD, EORSSD, and ORSI-4199) confirm the superiority of the proposed ESCNet compared with state-of-the-art methods.
光学遥感图像中显著目标检测的边缘语义协同网络
深度学习的快速发展促进了光学遥感图像中显著目标检测(ORSI-SOD)的发展。然而,ORSI-SOD面临着许多挑战,包括彩色和阴影背景的干扰,或光学遥感图像(orsi)中目标数量和尺度的不确定性。现有的模型大多难以建立有效的长距离特征依赖关系。为了解决这个问题,我们提出了一个边缘语义协作网络(ESCNet)。具体来说,ESCNet设计了一个交互式图形推理模块(IGIM)来建模通道交互并通过图形推理捕获远程语义依赖。然后,采用基于复合关注机制的语义特征增强模块(Semantic Feature Enhancement Module, SFEM)对依赖信息进行细化;同时,采用多尺度特征细化方法提取精确边界。最后,每个阶段产生的特征依次输入解码器并生成最终的显著性图。在三个公共数据集(ORSSD、EORSSD和ORSI-4199)上进行的大量实验证实了所提出的ESCNet与现有方法相比的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信