Samuel Perreault , Yanbo Tang , Ruyi Pan , Nancy Reid
{"title":"Inference for overparametrized hierarchical Archimedean copulas","authors":"Samuel Perreault , Yanbo Tang , Ruyi Pan , Nancy Reid","doi":"10.1016/j.jmva.2025.105483","DOIUrl":null,"url":null,"abstract":"<div><div>Hierarchical Archimedean copulas (HACs) are multivariate uniform distributions constructed by nesting Archimedean copulas into one another, and provide a flexible approach to modeling non-exchangeable data. However, this flexibility in the model structure may lead to over-fitting when the model estimation procedure is not performed properly. In this paper, we examine the problem of structure estimation and more generally on the selection of a parsimonious model from the hypothesis testing perspective. Formal tests for structural hypotheses concerning HACs have been lacking so far, most likely due to the restrictions on their associated parameter space which hinders the use of standard inference methodology. Building on previously developed asymptotic methods for these non-standard parameter spaces, we provide an asymptotic stochastic representation for the maximum likelihood estimators of (potentially) overparametrized HACs, which we then use to formulate a likelihood ratio test for certain common structural hypotheses. Additionally, we also derive analytical expressions for the first- and second-order partial derivatives of two-level HACs based on Clayton and Gumbel generators, as well as general numerical approximation schemes for the Fisher information matrix.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"210 ","pages":"Article 105483"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000788","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Hierarchical Archimedean copulas (HACs) are multivariate uniform distributions constructed by nesting Archimedean copulas into one another, and provide a flexible approach to modeling non-exchangeable data. However, this flexibility in the model structure may lead to over-fitting when the model estimation procedure is not performed properly. In this paper, we examine the problem of structure estimation and more generally on the selection of a parsimonious model from the hypothesis testing perspective. Formal tests for structural hypotheses concerning HACs have been lacking so far, most likely due to the restrictions on their associated parameter space which hinders the use of standard inference methodology. Building on previously developed asymptotic methods for these non-standard parameter spaces, we provide an asymptotic stochastic representation for the maximum likelihood estimators of (potentially) overparametrized HACs, which we then use to formulate a likelihood ratio test for certain common structural hypotheses. Additionally, we also derive analytical expressions for the first- and second-order partial derivatives of two-level HACs based on Clayton and Gumbel generators, as well as general numerical approximation schemes for the Fisher information matrix.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.