{"title":"Shape-from-template with generalised camera","authors":"Agniva Sengupta, Stefan Zachow","doi":"10.1016/j.imavis.2025.105579","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a new method for non-rigidly registering a 3D shape to 2D keypoints observed by a constellation of multiple cameras. Non-rigid registration of a 3D shape to observed 2D keypoints, i.e., Shape-from-Template (S<em>f</em>T), has been widely studied using single images, but S<em>f</em>T with information from multiple-cameras jointly opens new directions for extending the scope of known use-cases such as 3D shape registration in medical imaging and registration from hand-held cameras, to name a few. We represent such multi-camera setup with the generalised camera model; therefore any collection of perspective or orthographic cameras observing any deforming object can be registered. We propose multiple approaches for such S<em>f</em>T: the <em>first</em> approach where the corresponded keypoints lie on a direction vector from a known 3D point in space, the <em>second</em> approach where the corresponded keypoints lie on a direction vector from an unknown 3D point in space but with known orientation w.r.t some local reference frame, and a <em>third</em> approach where, apart from correspondences, the silhouette of the imaged object is also known. Together, these form the first set of solutions to the S<em>f</em>T problem with generalised cameras. The key idea behind S<em>f</em>T with generalised camera is the improved reconstruction accuracy from estimating deformed shape while utilising the additional information from the mutual constraints between multiple views of a deformed object. The correspondence-based approaches are solved with convex programming while the silhouette-based approach is an iterative refinement of the results from the convex solutions. We demonstrate the accuracy of our proposed methods on many synthetic and real data<span><span><sup>1</sup></span></span>.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"162 ","pages":"Article 105579"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625001672","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a new method for non-rigidly registering a 3D shape to 2D keypoints observed by a constellation of multiple cameras. Non-rigid registration of a 3D shape to observed 2D keypoints, i.e., Shape-from-Template (SfT), has been widely studied using single images, but SfT with information from multiple-cameras jointly opens new directions for extending the scope of known use-cases such as 3D shape registration in medical imaging and registration from hand-held cameras, to name a few. We represent such multi-camera setup with the generalised camera model; therefore any collection of perspective or orthographic cameras observing any deforming object can be registered. We propose multiple approaches for such SfT: the first approach where the corresponded keypoints lie on a direction vector from a known 3D point in space, the second approach where the corresponded keypoints lie on a direction vector from an unknown 3D point in space but with known orientation w.r.t some local reference frame, and a third approach where, apart from correspondences, the silhouette of the imaged object is also known. Together, these form the first set of solutions to the SfT problem with generalised cameras. The key idea behind SfT with generalised camera is the improved reconstruction accuracy from estimating deformed shape while utilising the additional information from the mutual constraints between multiple views of a deformed object. The correspondence-based approaches are solved with convex programming while the silhouette-based approach is an iterative refinement of the results from the convex solutions. We demonstrate the accuracy of our proposed methods on many synthetic and real data1.
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.