{"title":"A P-Version of Convolution Quadrature in Wave Propagation","authors":"Alexander Rieder","doi":"10.1137/24m1642524","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1729-1756, August 2025. <br/> Abstract. We consider a novel way of discretizing wave scattering problems using the general formalism of convolution quadrature, but instead of reducing the time step size ([math]-method), we achieve accuracy by increasing the order of the method ([math]-method). We base this method on discontinuous Galerkin time stepping and use the Z-transform. We show that for a certain class of incident waves, the resulting schemes observe a (root)-exponential convergence rate with respect to the number of boundary integral operators that need to be applied. Numerical experiments confirm the finding.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"105 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1642524","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1729-1756, August 2025. Abstract. We consider a novel way of discretizing wave scattering problems using the general formalism of convolution quadrature, but instead of reducing the time step size ([math]-method), we achieve accuracy by increasing the order of the method ([math]-method). We base this method on discontinuous Galerkin time stepping and use the Z-transform. We show that for a certain class of incident waves, the resulting schemes observe a (root)-exponential convergence rate with respect to the number of boundary integral operators that need to be applied. Numerical experiments confirm the finding.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.